
CS70: Jean Walrand: Lecture 26.

Expectation; Geometric & Poisson

1. Random Variables: Brief Review
2. Expectation
3. Linearity of Expectation
4. Geometric Distribution
5. Poisson Distribution



Random Variables: Review

Definition
A random variable, X , for a random experiment with sample space Ω
is a function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

Definitions
For a ∈ℜ, one defines X−1(a) := {ω ∈ Ω | X (ω) = a}.

The probability that X = a is defined as Pr [X = a] = Pr [X−1(a)].

The distribution of a random variable X , is {(a,Pr [X = a]) : a ∈A },
where A is the range of X . That is, A = {X (ω),ω ∈ Ω}.
Let X ,Y ,Z be random variables on Ω and g : ℜ3→ℜ a function.
Then g(X ,Y ,Z ) is the random variable that assigns the value
g(X (ω),Y (ω),Z (ω)) to ω.

Thus, if V = g(X ,Y ,Z ), then V (ω) := g(X (ω),Y (ω),Z (ω)).



Expectation
Definition: The expectation (mean, expected value) of a random
variable X is

E [X ] = ∑
a

a×Pr [X = a].

Indicator:
Let A be an event. The random variable X defined by

X (ω) =

{
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,
E [X ] = 1×Pr [X = 1] + 0×Pr [X = 0] = Pr [A].

The random variable X is sometimes written as

1{ω ∈ A} or 1A(ω).



Linearity of Expectation
Theorem:

E [X ] = ∑
ω

X (ω)×Pr [ω].

Theorem: Expectation is linear

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn].

Proof:

E [a1X1 + · · ·+ anXn]

= ∑
ω

(a1X1 + · · ·+ anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω) + · · ·+ anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω] + · · ·+ an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1] + · · ·+ anE [Xn].



Using Linearity - 1: Dots on dice

Roll a die n times.

Xm = number of dots on roll m.

X = X1 + · · ·+ Xn = total number of dots in n rolls.

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because the Xm have the same distribution

Now,

E [X1] = 1× 1
6

+ · · ·+ 6× 1
6

=
6×7

2
× 1

6
=

7
2
.

Hence,

E [X ] =
7n
2
.



Strong Law of Large Numbers: An Example
Rolling Dice. Xm = number of dots on roll m.

Theorem:
X1 + X2 + · · ·+ Xn

n
→ E [X1] = 3.5 as n→ ∞.



Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X = X1 + · · ·+ Xn where
Xm = 1{student m gets his/her own assignment back}.
One has

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because all the Xm have the same distribution
= nPr [X1 = 1], because X1 is an indicator
= n(1/n), because student 1 is equally likely

to get any one of the n assignments
= 1.

Note that linearity holds even though the Xm are not
independent (whatever that means).



Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr [X = i], for each i .

Pr [X = i] =

(
n
i

)
pi(1−p)n−i .

E [X ] = ∑
i

i×Pr [X = i] = ∑
i

i×
(

n
i

)
pi(1−p)n−i .

Uh oh. ... Or... a better approach: Let

Xi =

{
1 if i th flip is heads
0 otherwise

E [Xi ] = 1×Pr [“heads′′] + 0×Pr [“tails′′] = p.

Moreover X = X1 + · · ·Xn and

E [X ] = E [X1] + E [X2] + · · ·E [Xn] = n×E [Xi ]= np.



Using Linearity - 4

Assume A and B are disjoint events. Then 1A∪B(ω) = 1A(ω) + 1B(ω).

Taking expectation, we get

Pr [A∪B] = E [1A∪B] = E [1A + 1B] = E [1A] + E [1B] = Pr [A] + Pr [B].

In general, 1A∪B(ω) = 1A(ω) + 1B(ω)−1A∩B(ω).

Taking expectation, we get Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B].

Observe that if Y (ω) = b for all ω, then E [Y ] = b.

Thus, E [X + b] = E [X ] + b.



Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

x
g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].



An Example
Let X be uniform in {−2,−1,0,1,2,3}.
Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4 + 1 + 0 + 1 + 4 + 9}1
6

=
19
6
.

Method 1 - We find the distribution of Y = X 2:

Y =





4, w.p. 2
6

1, w.p. 2
6

0, w.p. 1
6

9, w.p. 1
6 .

Thus,

E [Y ] = 4
2
6

+ 1
2
6

+ 0
1
6

+ 9
1
6

=
19
6
.



Calculating E [g(X ,Y ,Z )]
We have seen that E [g(X )] = ∑x g(x)Pr [X = x ].

Using a similar derivation, one can show that

E [g(X ,Y ,Z )] = ∑
x ,y ,z

g(x ,y ,z)Pr [X = x ,Y = y ,Z = z].

An Example. Let X ,Y be as shown below:

0.1

0 1

0.2 0.3

0.4
0

1

X

Y

(X, Y ) =

8
>><
>>:

(0, 0), w.p. 0.1
(1, 0), w.p. 0.4
(0, 1), w.p. 0.2
(1, 1), w.p. 0.3

E [cos(2πX + πY )] = 0.1cos(0) + 0.4cos(2π) + 0.2cos(π) + 0.3cos(3π)

= 0.1×1 + 0.4×1 + 0.2× (−1) + 0.3× (−1) = 0.



Center of Mass

The expected value has a center of mass interpretation:

a1 a2 a3

p3p2p1

0.5 0.5

0 1

0.70.3

0.7
0 1

0.5

p3(a3 � µ)
µ

p2(a2 � µ)
p1(a1 � µ)

X

n

pn(an � µ) = 0

, µ =
X

n

anpn = E[X]



Monotonicity
Definition
Let X ,Y be two random variables on Ω. We write X ≤ Y if
X (ω)≤ Y (ω) for all ω ∈ Ω, and similarly for X ≥ Y and X ≥ a
for some constant a.
Facts
(a) If X ≥ 0, then E [X ]≥ 0.
(b) If X ≤ Y , then E [X ]≤ E [Y ].
Proof
(a) If X ≥ 0, every value a of X is nonnegative. Hence,

E [X ] = ∑
a

aPr [X = a]≥ 0.

(b) X ≤ Y ⇒ Y −X ≥ 0⇒ E [Y ]−E [X ] = E [Y −X ]≥ 0.

Example:

B =∪mAm⇒ 1B(ω)≤∑m 1Am (ω)⇒Pr [∪mAm]≤∑m Pr [Am].



Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2, . . . ,6}. We say that X is uniformly distributed in
{1,2, . . . ,6}.
More generally, we say that X is uniformly distributed in
{1,2, . . . ,n} if Pr [X = m] = 1/n for m = 1,2, . . . ,n.
In that case,

E [X ] =
n

∑
m=1

mPr [X = m] =
n

∑
m=1

m× 1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.



Geometric Distribution
Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}.
Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.



Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.



Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Note that
∞

∑
n=1

Pr [Xn] =
∞

∑
n=1

(1−p)n−1p = p
∞

∑
n=1

(1−p)n−1 = p
∞

∑
n=0

(1−p)n.

Now, if |a|< 1, then S := ∑
∞

n=0 an = 1
1−a . Indeed,

S = 1 + a + a2 + a3 + · · ·
aS = a + a2 + a3 + a4 + · · ·

(1−a)S = 1 + a−a + a2−a2 + · · ·= 1.

Hence,
∞

∑
n=1

Pr [Xn] = p
1

1− (1−p)
= 1.



Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

=
∞

∑
n=1

Pr [X = n] = 1.

Hence,

E [X ] =
1
p
.



Geometric Distribution: Memoryless
Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].



Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A] = Pr [X > m].

The coin is memoryless, therefore, so is X .



Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one
has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

[See later for a proof.]

If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
∞

∑
i=1

(1−p)i−1 =
∞

∑
i=0

(1−p)i =
1

1− (1−p)
=

1
p
.



Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has

E [X ] =
∞

∑
i=1

i×Pr [X = i]

=
∞

∑
i=1

i{Pr [X ≥ i]−Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− i×Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− (i−1)×Pr [X ≥ i]}

=
∞

∑
i=1

Pr [X ≥ i].



Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”



Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ

n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m + 1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈(2) λ m

m!

(
1− λ

n

)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.



Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ

λ

∞

∑
m=0

λ m

m!

= e−λ
λeλ = λ .



Simeon Poisson

The Poisson distribution is named after:



Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.



Summary

Expectation; Geometric & Poisson

I E [X ] := ∑a aPr [X = a].
I Expectation is Linear.
I B(n,p),U[1 : n],G(p),P(λ ).


