CS70: Jean Walrand: Lecture 26.

‘Expectation; Geometric & Poisson
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Random Variables: Review

Definition
A random variable, X, for a random experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(o) to each o € Q.
Definitions

For ac R, one defines X~'(a) := {w € Q| X(o) = a}.

The probability that X = ais defined as Pr{X = a] = Pr{X~'(a)].
The distribution of a random variable X, is {(a,Pr[X =a]): a€ &},
where .« is the range of X. That is, & = {X(w),® € Q}.

Let X, Y, Z be random variables on Q and g : %% — R a function.
Then g(X, Y,Z) is the random variable that assigns the value
9(X(w), Y(0),Z(w)) to o.

Thus, if V = g(X, ¥,2), then V(o) = g(X(0), Y(0), Z(o)).

Expectation
Definition: The expectation (mean, expected value) of a random
variable X is
E[X] = ):ax Pr[X = al.
a

Indicator:
Let A be an event. The random variable X defined by

1, focA
X(“’):{o, o0 g A

is called the indicator of the event A.
Note that Pr[X = 1] = Pr[A] and Pr[X =0] =1— Pr[A].

Hence,
E[X]=1xPr[X=1]40x Pr[X =0] = Pr[A].

The random variable X is sometimes written as

1{w € A} or 14(w).

Linearity of Expectation
Theorem:
E[X] =Y. X(w) x Pr{a].

Theorem: Expectation is linear

E[a1X1 +»~-+a,,X,,] :a1E[X1]+--~+a,,E[X,,].

Proof:
Elai X1+ -+ anXp)
= Z(a1 X1+ + anXp)(w)Pr{o]
(0]

=Y (a1 X1 (@) + -+ anXn(@)) Pr[o]
=a; Yy Xi(0)Pr{o]+---+an Y Xn(w)Pr[o]

:a1E[X1]+~~+anE[Xn].
]

Using Linearity - 1: Dots on dice

Roll a die n times.
Xm = number of dots on roll m.

X = Xj+---+ Xp = total number of dots in n rolls.

E[X] = E[Xi+-+Xn]
= E[Xi]+---+ E[Xq], by linearity
= nE[Xi], because the X, have the same distribution
Now 1 1 6x7 1 7
X
E[Xi]=1 ><6+-»~+6><é: 5 =%
Hence, .
n
E[X]= Ex

Strong Law of Large Numbers: An Example
Rolling Dice. X, = number of dots on roll m.

Xi+Xo+--+ X
n

Theorem: — E[Xi]=3.5as n— .
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Using Linearity - 2: Fixed point.
Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

E[X] E[Xi+-- 4 Xj]

E[X4]+---+ E[X3], by linearity

= nE[X4], because all the X, have the same distribution
= nPr[X; =1], because Xj is an indicator

= n(1/n), because student 1 is equally likely

to get any one of the n assignments

= 1.
Note that linearity holds even though the X, are not
independent (whatever that means).

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads
Binomial Distibution: Pr[X = /], for each i.

prix =i (7)1 -pr.

EIX] = Yix PriX=i]=Yix <7>p/(1 oy

Uh oh. ... Or... a better approach: Let
X — { 1 ifithflipis hegds
0 otherwise
E[Xi] =1 x Pr[*heads"] +0 x Pr[“tails”] = p.
Moreover X = X1 +--- X, and
E[X] = E[Xi]+ E[Xo] + - -- E[Xy] = nx E[Xj]= np.

Using Linearity - 4

Assume A and B are disjoint events. Then 14 5(®) = 14(®) + 15(o).
Taking expectation, we get

PrIAUB] = E[1a.8] = E[1o+15] = E[14] + E[16] = Pr[A] + Pr{B].
In general, 14,5(®) = 14(®)+1g(®) — 1 475(®).
Taking expectation, we get Pr[AU B] = Pr[A]+ Pr[B] — Pr[An B.

Observe that if Y(w) = b for all o, then E[Y] = b.
Thus, E[X + b] = E[X] +b.

Calculating E[g(X)]
Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].
Method 1: We calculate the distribution of Y:
PrlY =y]=PrX e g '(y)] where g "(x) = {x € % : g(x) = y}.
This is typically rather tedious!
Method 2: We use the following result.

Theorem:
E[g(X)] = Y. g(x)Pr[X = x].
Proof: x
ElgX)] = YoX(@)Priw]=), Y g(X(e)Prle]
@ X weX~1(x)
=Y Y 9xPrlel=Ygx) Y Prle]
X weX-1(x) X weX~1(x)

Y a(x)PriX =x].

An Example
Let X be uniformin {-2,—1,0,1,2,3}.

Let also g(X) = X2. Then (method 2)

E[g(X)]

3
1
2
X°—
X:Z—Z 6
1 19
= {(4+140+1+449) =

Method 1 - We find the distribution of Y = X2:

4, wp. %
y_ 1, w.p. s
0, w.p. s
9, wp. g

Thus, 2 2 1 1 19
E[Y] =45 +15+05+95= &

Calculating E[g(X,Y,2)]
We have seen that E[g(X)] = L, g(x)Pr[X = x].

Using a similar derivation, one can show that

Elg(X.Y.2)]= Y o(x.y,2)PriX=x,Y=y,Z=2].
X,y.Z

An Example. Let X, Y be as shown below:

w.p. 0.1

(0,0
(1,0), w.p. 0.4
0,1), w.p. 0.2
(1,1), w.p. 0.3
E[cos(2zX +nY)] = 0.1cos(0)+0.4cos(27)+ 0.2cos(xw)+ 0.3cos(37)

01x1+04x1+0.2x(~1)+0.3x(~1)=0.




Center of Mass

The expected value has a center of mass interpretation:

.
0.5 05 0.7
0 A 1 0 A
0.5 0.7

Monotonicity

Definition

Let X, Y be two random variables on Q. We write X < Y if
X(w) < Y() for all w € Q, and similarly for X > Y and X > a
for some constant a.

Facts

(a) If X >0, then E[X] > 0.

(b) If X <Y, then E[X] < E[Y].

Proof

(a) If X >0, every value a of X is nonnegative. Hence,

E[X]=Y aPr[X =4 >0.

) X<Y=Y-X>0=E[Y]-E[X]=E[Y-X]>0.
Example:

B=UnAn=1p(®) <Lm1a,(@) = PrlunAn] < Lm PriAm].

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2,...,6}. We say that X is uniformly distributed in
{1,2,...,6}.

More generally, we say that X is uniformly distributed in
{1,2,...,n}if PriX=m]=1/nform=1,2,....n.

In that case,

171n(n+1)7n+1
n n 2 — 2

E[X]= Z: mPr[X =m] = Z: mx

Geometric Distribution
Let’s flip a coin with Pr[H] = p until we get H.

F

For instance:

wy=H, or
w=TH, or
wo3=TTH,or

0 =TTTT--TH.
Note that Q = {wp,n=1,2,...}.
Let X be the number of flips until the first H. Then, X(wp) = n.

Also,
PriX=n=(1-p)"'p,n>1.

Geometric Distribution

PriX=n]=(1-p)" 'p,n>1.

@ Geometric(5%)
W Geometric(20%)
01 Geometric(50%)
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Geometric Distribution

PriX=n=(1-p)"'p,n>1.
Note that

¥ Pl = (1P tp=p (1A =p L(1-p)"

Now, if [a] < 1, then S:= Y5 ja" = ;. Indeed,

S = 1t+at+d+a+-
as = atd+a+at+
(1-a8 = 1+a-a+d—-d+---=1.

Hence,

1.

- 1
N;Pr[Xn] =p A




Geometric Distribution: Expectation

X=pG(p), ie, PriX=n=(1-p)"'p,n>1.

One has
EX]=Y nPriX=n]=Y n(1—p)"'p.
n=1 n=1
Thus,
EX] = p+2(1-p)p+3(1-p)’p+4(1-p)°p+--
(1-p)EX] = (1-p)p+2(1-p)?p+3(1—p)°p+---
PEIX] = p+ (1-pp+ (1-pPp+ (1-p)°p+--
by subtracting the previous two identities
= PriX=n]=1.
n=1
Hence, ;
E[X]=-.
(X] o

Geometric Distribution: Memoryless
Let X be G(p). Then, for n> 0,

Pr[X > n] = Pr[ first nflips are T]=(1—p)".
Theorem

Pr(X > n+m|X > n] = Pr[X >m|,m,n>0.
Proof:

Pr[X>n+mand X > n]
Pr[iX > n]
Pr(X > n+m|
Pr[X > n]
(1—p)™m m
a—pn =P
= Pr[X>m].

Pr[{X > n+m|X > n]

Geometric Distribution: Memoryless - Interpretation

Pr(X>n+m|X > n] = Pr[X > m]|,m,n>0.

B A
TTT.... TTTITTT.... T....... H

3 e
n m

Pr(X > n+m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.

Geometric Distribution: Yet another look

Theorem: For ar.v. X that takes the values {0,1,2,...}, one
has

E[X] = i PriX > i].
i=1

[See later for a proof.]
If X = G(p), then Pr{X >i]=Pr[X>i—1=(1-p)".
Hence,

gk

EX= L0 -p) = L0 = (5

i=0

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2,...}, one has
E[X]=

I

PriX > 1.

oo

Proof: One has !

EX] = YixPriX=i
i=
= Y HPIX > - PrX > i+ 1]}
i
= Y {ixPrIX >0 ix PrIX > it 1]}

Il
[ agkl

{ix PrX>1—(i—1)x PrIX > 1]}

Il
gkl

PrixX > i].

Poisson

Experiment: flip a coin ntimes. The coin is such that
Pr{H]=A/n.
Random Variable: X - number of heads. Thus, X = B(n,1/n).

Poisson Distribution is distribution of X “for large n.”
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Poisson

Experiment: flip a coin ntimes. The coin is such that
Pr[H]=A/n.

Random Variable: X - number of heads. Thus, X = B(n,A/n).
Poisson Distribution is distribution of X “for large n.”

Poisson Distribution: Definition and Mean
Definition Poisson Distribution with parameter A > 0

m
X=PA)e PriX=m]= %e’l,mzo‘

Simeon Poisson

The Poisson distribution is named after:

Siméon Poisson

We expect X < n. For m< none has Fact: E[X] = 1.
PriX=m] = <;'7)p’”(1 -p)" ", withp=2/n Proof:
a(n—1)-(n—m+1) (A\™/, A\"" = Moy A
- T m  \n -2 ElX] = meile - 1)
= m! = (m—1)!
_ _ m n-m oo oo
_ nn=t)-(n=—m+1)A" (0 A o AT e AT
nm m! n = € m Z m!
) AM ( AN @ AT (AN AT g "
~ A 1,,> ~ 7(177> ~— et = e*Aet =1
| | | :
m! n m! n m Siméen Denis Poisson (1781-1840)
For (1) we used m < n; for (2) we used (1 —a/n)" ~ e 4. 0
Summary

Equal Time: B. Geometric

The geometric distribution is named after:

B. Geometric

B. Geometric (b. 300 BC)

| could not find a picture of D. Binomial, sorry.

‘ Expectation; Geometric & Poisson

» E[X]:=Y,aPr[X=a].
» Expectation is Linear.
> B(n,p). U[1: ], G(p). P(A).




