CS70: Sanjit Seshia \& Jean Walrand: Lecture 24b.

Review M2 - Probability

CS70: Sanjit Seshia \& Jean Walrand: Lecture 24b.

Review M2 - Probability

Probability: Midterm 2 Review.

- Framework:
- Probability Space
- Conditional Probability \& Bayes' Rule
- Independence
- Mutual Independence
- Notes:
- Note 25b: Page 1 + Bayes' Rule on page 2.
- Note 13
- Note 14

Review: Probability Space

Review: Probability Space

Sample Space

Samples (Outcomes)

Review: Probability Space

Sample Space

Samples (Outcomes)

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]$.
$\operatorname{Pr}[A \cap B \cap C]$
$=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid A \cap B]$.

Review: Probability Space

Sample Space

Samples (Outcomes)

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B]$.
$\operatorname{Pr}[A \cap B \cap C]$
$=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid A \cap B]$.

Review: Bayes' Rule

Review: Bayes' Rule

- Priors: $\operatorname{Pr}\left[A_{n}\right]=p_{n}, n=1, \ldots, M$

Review: Bayes' Rule

- Priors: $\operatorname{Pr}\left[A_{n}\right]=p_{n}, n=1, \ldots, M$
- Conditional Probabilities: $\operatorname{Pr}\left[B \mid A_{n}\right]=q_{n}, n=1, \ldots, N$

Review: Bayes' Rule

- Priors: $\operatorname{Pr}\left[A_{n}\right]=p_{n}, n=1, \ldots, M$
- Conditional Probabilities: $\operatorname{Pr}\left[B \mid A_{n}\right]=q_{n}, n=1, \ldots, N$
$\Rightarrow \Rightarrow$ Posteriors: $\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{p_{1} q_{1}+\cdots+p_{N} q_{N}}$

Review: Bayes' Rule

- Priors: $\operatorname{Pr}\left[A_{n}\right]=p_{n}, n=1, \ldots, M$
- Conditional Probabilities: $\operatorname{Pr}\left[B \mid A_{n}\right]=q_{n}, n=1, \ldots, N$
$\Rightarrow \Rightarrow$ Posteriors: $\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{p_{1} q_{1}+\cdots+p_{N} q_{N}}$

Event B

Bayes' Rule: Examples

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$?

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$?

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$?

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Yes.

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Yes.
- if $q_{n}=1$, then $p_{n}^{\prime}>0$?

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Yes.
- if $q_{n}=1$, then $p_{n}^{\prime}>0$? Not necessarily.

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Yes.
- if $q_{n}=1$, then $p_{n}^{\prime}>0$? Not necessarily.
- if $p_{n}=1 / N$ for all n, then MLE = MAP?

Bayes' Rule: Examples

Let $p_{n}^{\prime}=\operatorname{Pr}\left[A_{n} \mid B\right]$ be the posterior probabilities.
Thus, $p_{n}^{\prime}=p_{n} q_{n} /\left(p_{1} q_{1}+\cdots+p_{N} q_{n}\right)$.
Questions: Is it true that

- if $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Not necessarily.
- if $p_{n}>p_{k}$ and $q_{n}>q_{k}$, then $p_{n}^{\prime}>p_{k}^{\prime}$? Yes.
- if $q_{n}=1$, then $p_{n}^{\prime}>0$? Not necessarily.
- if $p_{n}=1 / N$ for all n, then MLE $=$ MAP? Yes.

Review: Independence

Review: Independence

"First coin yields 1 " and "Sum is 7" are independent

Review: Independence

"First coin yields 1 " and "Sum is 7" are independent

Review: Independence

Ω : Uniform

"First coin yields 1 " and "Sum is 7" are independent

Pairwise, but not mutually

If $\left\{A_{j}, i \in J\right\}$ are mutually independent, then $\left[A_{1} \cap \bar{A}_{2}\right] \Delta A_{3}$ and $A_{4} \backslash A_{5}$ are independent.

Our intuitive meaning of "independent events" is mutual independence.

Review: Independence

Review: Independence

Recall

Review: Independence

Recall

- A and B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Review: Independence

Recall

- A and B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- $\left\{A_{j}, j \in J\right\}$ are mutually independent if $\operatorname{Pr}\left[\cap_{j \in K} A_{j}\right]=\Pi_{j \in K} \operatorname{Pr}\left[A_{j}\right], \forall$ finite $K \subset J$.

Review: Independence

Recall

- A and B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- $\left\{A_{j}, j \in J\right\}$ are mutually independent if $\operatorname{Pr}\left[\cap_{j \in K} A_{j}\right]=\Pi_{j \in K} \operatorname{Pr}\left[A_{j}\right], \forall$ finite $K \subset J$.

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2 :

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B], \ldots, \operatorname{Pr}[C \cap D]=\operatorname{Pr}[C] \operatorname{Pr}[D]
$$

Review: Independence

Recall

- A and B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- $\left\{A_{j}, j \in J\right\}$ are mutually independent if $\operatorname{Pr}\left[\cap_{j \in K} A_{j}\right]=\Pi_{j \in K} \operatorname{Pr}\left[A_{j}\right], \forall$ finite $K \subset J$.

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2 :
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B], \ldots, \operatorname{Pr}[C \cap D]=\operatorname{Pr}[C] \operatorname{Pr}[D]$
- by 3: $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C], \ldots, \operatorname{Pr}[B \cap C \cap D]=$ $\operatorname{Pr}[B] \operatorname{Pr}[C] \operatorname{Pr}[D]$

Review: Independence

Recall

- A and B are independent if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- $\left\{A_{j}, j \in J\right\}$ are mutually independent if $\operatorname{Pr}\left[\cap_{j \in K} A_{j}\right]=\Pi_{j \in K} \operatorname{Pr}\left[A_{j}\right], \forall$ finite $K \subset J$.

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2 :
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B], \ldots, \operatorname{Pr}[C \cap D]=\operatorname{Pr}[C] \operatorname{Pr}[D]$
- by 3: $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C], \ldots, \operatorname{Pr}[B \cap C \cap D]=$ $\operatorname{Pr}[B] \operatorname{Pr}[C] \operatorname{Pr}[D]$
- by 4: $\operatorname{Pr}[A \cap B \cap C \cap D]=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C] \operatorname{Pr}[D]$.

Independence: Question 1

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?
$\{A, B, C\}$,

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?
$\{A, B, C\}$, and $\{B, C, D\}$

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?
$\{A, B, C\}$, and $\{B, C, D\}$
Can you find three events among A, B, C, D that are mutually independent?

Independence: Question 1

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?
$\{A, B, C\}$, and $\{B, C, D\}$
Can you find three events among A, B, C, D that are mutually independent?

No: We would need an outcome with probability $1 / 8$.

Independence: Question 2

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1) ?$

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1) ?$

Let $a=|A|, b=|B|, c=|A \cap B|$.

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1) ?$

Let $a=|A|, b=|B|, c=|A \cap B|$.
Then,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B],
$$

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1)$?

Let $a=|A|, b=|B|, c=|A \cap B|$.
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B] & =\operatorname{Pr}[A] \operatorname{Pr}[B], \text { so that } \\
\frac{c}{p} & =\frac{a}{p} \times \frac{b}{p} .
\end{aligned}
$$

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1) ?$

Let $a=|A|, b=|B|, c=|A \cap B|$.
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B] & =\operatorname{Pr}[A] \operatorname{Pr}[B], \text { so that } \\
\frac{c}{p} & =\frac{a}{p} \times \frac{b}{p} . \text { Hence, } \\
a b & =c p .
\end{aligned}
$$

Independence: Question 2

Let $\Omega=\{1,2, \ldots, p\}$ be a uniform probability space where p is prime.
Can you find two independent events A and B with $\operatorname{Pr}[A], \operatorname{Pr}[B] \in(0,1) ?$

Let $a=|A|, b=|B|, c=|A \cap B|$.
Then,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B] & =\operatorname{Pr}[A] \operatorname{Pr}[B], \text { so that } \\
\frac{c}{p} & =\frac{a}{p} \times \frac{b}{p} . \text { Hence, } \\
a b & =c p .
\end{aligned}
$$

This is not possible since $a, b<p$.

Review: Collisions \& Collecting

Collisions:

$$
\operatorname{Pr}[\text { no collision }] \approx e^{-m^{2} / 2 n}
$$

Review: Collisions \& Collecting

Collisions:

$$
\operatorname{Pr}[\text { no collision }] \approx e^{-m^{2} / 2 n}
$$

Collecting:
$\operatorname{Pr}[$ miss Wilson $] \approx e^{-m / n}$
$\operatorname{Pr}[$ miss at least one $] \leq n e^{-m / n}$

Review: Math Tricks

Approximations:

Review: Math Tricks

Approximations:

$$
\ln (1-\varepsilon) \approx-\varepsilon
$$

Review: Math Tricks

Approximations:

$$
\begin{aligned}
& \ln (1-\varepsilon) \approx-\varepsilon \\
& \exp \{-\varepsilon\} \approx 1-\varepsilon
\end{aligned}
$$

Review: Math Tricks

Approximations:

$$
\begin{aligned}
& \ln (1-\varepsilon) \approx-\varepsilon \\
& \exp \{-\varepsilon\} \approx 1-\varepsilon
\end{aligned}
$$

Sums:

$$
(a+b)^{n}=\sum_{m=0}^{n}\binom{n}{m} a^{m} b^{n-m}
$$

Review: Math Tricks

Approximations:

$$
\begin{aligned}
& \ln (1-\varepsilon) \approx-\varepsilon \\
& \exp \{-\varepsilon\} \approx 1-\varepsilon
\end{aligned}
$$

Sums:

$$
\begin{aligned}
& (a+b)^{n}=\sum_{m=0}^{n}\binom{n}{m} a^{m} b^{n-m} \\
& 1+2+\cdots+n=\frac{n(n+1)}{2}
\end{aligned}
$$

Math Tricks, continued Symmetry:

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag,

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.
Union Bound:

$$
\operatorname{Pr}[A \cup B \cup C] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]
$$

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.
Union Bound:

$$
\operatorname{Pr}[A \cup B \cup C] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]
$$

Inclusion/Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.
Union Bound:

$$
\operatorname{Pr}[A \cup B \cup C] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]
$$

Inclusion/Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Total Probability:

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]
$$

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.
Union Bound:

$$
\operatorname{Pr}[A \cup B \cup C] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]
$$

Inclusion/Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Total Probability:

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]
$$

An L^{2}-bounded martingale converges almost surely.

Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

$$
\operatorname{Pr}[\text { ball } 5 \text { is red }]=\operatorname{Pr}[\text { ball } 1 \text { is red }]
$$

Order of balls = permutation.
All permutations have same probability.
Union Bound:

$$
\operatorname{Pr}[A \cup B \cup C] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]+\operatorname{Pr}[C]
$$

Inclusion/Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Total Probability:

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]
$$

An L^{2}-bounded martingale converges almost surely. Just kidding!

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[A]$.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[A]$. False

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[A]$. False
- $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid B]$.

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[A]$. False
- $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid B]$. False

A mini-quizz

True or False:

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$. False True iff disjoint.
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. False True iff independent.
- $A \cap B=\emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[A]$. False
- $\operatorname{Pr}[A \cap B \cap C]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid B]$. False

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

Is it true that $\operatorname{Pr}[A \mid C]>\operatorname{Pr}[B \mid C]$?

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

Is it true that $\operatorname{Pr}[A \mid C]>\operatorname{Pr}[B \mid C]$?
No.

- Deal two cards from a 52-card deck.

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

Is it true that $\operatorname{Pr}[A \mid C]>\operatorname{Pr}[B \mid C]$?
No.

- Deal two cards from a 52 -card deck. What is the probability that the value of the first card is strictly larger than that of the second?

$$
\operatorname{Pr}[\text { same }]=\frac{3}{51} .
$$

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

Is it true that $\operatorname{Pr}[A \mid C]>\operatorname{Pr}[B \mid C]$?
No.

- Deal two cards from a 52 -card deck. What is the probability that the value of the first card is strictly larger than that of the second?

$$
\operatorname{Pr}[\text { same }]=\frac{3}{51} \cdot \operatorname{Pr}[\text { different }]=\frac{48}{51} .
$$

A mini-quizz; part 2

- $\Omega=\{1,2,3,4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$
A=\{1,2\}, B=\{1,3\}, C=\{1,4\} .
$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

No. In example above, $\operatorname{Pr}[A \cap B \cap C] \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

- Assume $\operatorname{Pr}[C \mid A]>\operatorname{Pr}[C \mid B]$.

Is it true that $\operatorname{Pr}[A \mid C]>\operatorname{Pr}[B \mid C]$?
No.

- Deal two cards from a 52 -card deck. What is the probability that the value of the first card is strictly larger than that of the second?

$$
\operatorname{Pr}[\text { same }]=\frac{3}{51} . \operatorname{Pr}[\text { different }]=\frac{48}{51} .
$$

$\operatorname{Pr}[$ first $>$ second $]=\frac{24}{51}$.

