

Review: Independence	Independence: Question 1	Independence: Question 2
Recall • A and B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$. • {A _j , j ∈ J} are mutually independent if $Pr[\cap_{j \in K} A_j] = \prod_{j \in K} Pr[A_j], \forall$ finite $K \subset J$. Thus, A, B, C, D are mutually independent if there are • independent 2 by 2: $Pr[A \cap B] = Pr[A]Pr[B], \dots, Pr[C \cap D] = Pr[C]Pr[D]$ • by 3: $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C], \dots, Pr[B \cap C \cap D] = Pr[B]Pr[C]Pr[D]$ • by 4: $Pr[A \cap B \cap C \cap D] = Pr[A]Pr[B]Pr[C]Pr[D]$.	Consider the uniform probability space and the events A, B, C, D . Which maximal collections of events among A, B, C, D are pairwise independent? $\{A, B, C\}$, and $\{B, C, D\}$ Can you find three events among A, B, C, D that are mutually independent? No: We would need an outcome with probability 1/8.	Let $\Omega = \{1, 2,, p\}$ be a uniform probability space where p is prime. Can you find two independent events A and B with $Pr[A], Pr[B] \in (0, 1)$? Let $a = A , b = B , c = A \cap B $. Then, $Pr[A \cap B] = Pr[A]Pr[B]$, so that $\frac{c}{p} = \frac{a}{p} \times \frac{b}{p}$. Hence, ab = cp. This is not possible since $a, b < p$.
Review: Collisions & Collecting Collisions: $Pr[no \text{ collision}] \approx e^{-m^2/2n}$ Collecting: $Pr[miss \text{ Wilson}] \approx e^{-m/n}$ $Pr[miss \text{ at least one}] \leq ne^{-m/n}$	Review: Math Tricks Approximations:	Math Tricks, continued Symmetry: E.g., if we pick balls from a bag, with no replacement,
	$\ln(1-arepsilon)pprox -arepsilon$ $\exp\{-arepsilon\}pprox 1-arepsilon$	$Pr[ball 5 \text{ is red}] = Pr[ball 1 \text{ is red}]$ Order of balls = permutation. All permutations have same probability. Union Bound: $Pr[A \cup B \cup C] < Pr[A] + Pr[B] + Pr[C]$
	Sums: $(a+b)^{n} = \sum_{m=0}^{n} {n \choose m} a^{m} b^{n-m}$ $1+2+\dots+n = \frac{n(n+1)}{2};$	Inclusion/Exclusion: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$ Total Probability: $Pr[B] = Pr[A_1]Pr[B A_1] + \dots + Pr[A_n]Pr[B A_n]$
	$1+2+\cdots+n=\frac{n(n+1)}{2};$	Pr[B] An L ² -bounded kidding!

