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Using Bayes’ rule, we find

Pr[FlulHigh Fever] — ~0.
r[FlulHigh Fever] = 65 080110 8x 1108501 ~ 000
Pr[Ebola|High Fever] — 1078 x 1 ~5x1078
g = 015x080110 8x14085x01
Pr[Other|High Fever] = 0.85>0.1 ~ 0.42

0.15x0.804+10"8 x 1 +0.85x 0.1
The values 0.58,5 x 10~8,0.42 are the posterior probabilities.
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Note that even though Pr[Fever|Ebola] = 1, one has

Pr[Ebola|Fever] = 0.
This example shows the importance of the prior probabilities.
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fever.

‘Ebola’ is the Maximum Likelihood Estimate (MLE) of the cause: it causes the
fever with the largest probability.

Recall that

PmQm

= Pr[Am].qm = Pr(B|Am], Pr{Am|B] = —Pm9m_____
Pm [Aml, Gm [BlAm]. PriAm|5] P1G1 + - +Ppmqm

Thus,

» MAP = value of m that maximizes pmqm.
» MLE = value of m that maximizes qm.
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Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: Pr[A|B] = P;[Agf], so that

PrlAn B]

PrAIB] = PriAl & —p g

= Pr[A] < Pr[AnB] = Pr[A|Pr[B].



Independence
Recall :

A and B are independent



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:
B B

A ©0.1| 00.15

(00.25 0 0.25 >
As

00.15 0.1

3




Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B B
A ©0.1| 00.15
00.25| 0 0.25
As
00.15 50.1
3

(A2, B) are independent:



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B

A 6 0.1

B

0 0.15

00.25
A (

0 0.25 >

00.15
3

(A2, B) are independent: Pr[Ax|B] =

00.1

0.5 = Pr[A].



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B

A 6 0.1

B

0 0.15

00.25
A (

0 0.25 >

00.15
3

(A2, B) are independent: Pr[Ax|B] =

(A2, B) are independent:

00.1

0.5 = Pr[A].



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B B
A ©0.1| 00.15
(00.25 0 0.25 >
As
00.15 50.1
3

(A2, B) are independent: Pr[Az|B] = 0.5 = Pr[Ag].
(A2, B) are independent: Pr[Az|B] = 0.5 = Pr[A;].



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B B
A ©01 | 00.15
A <00.25 0 0.25 >
00.15 50.1
3

(A2, B) are independent: Pr[Az|B] = 0.5 = Pr[Ag].
(A2, B) are independent: Pr[Ax|B] = 0.5 = Pr[A;].
(A1, B) are not independent:



Independence
Recall :

A and B are independent
< Pr[An B] = Pr[A]|Pr[B]
< Pr[A|B] = Pr[A].

Consider the example below:

B B
A ©01 | 00.15
A <00.25 0 0.25 >
00.15 50.1
3

(A2, B) are independent: Pr[Az|B] = 0.5 = Pr[Ag].
(A2, B) are independent: Pr[A;|B]=0.5= Pr[Ag]
(A4, B) are not independent: Pr[A|B] = 0 5 =0.2 # Pr[A{] =0.25.
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Pairwise Independence
Flip two fair coins. Let
» A="firstcoinis H' = {HT,HH};
» B='second coinis H' = {TH, HH};
» C = ‘the two coins are different’ = { TH, HT }.

~ B [
7 1
TH (O ~_ |O | HH
Q- | A
~

., ™ 41

-

"
\ !
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s
A, C are independent; B, C are independent;
AN B, C are not independent. (Pr[AnBN C] =0 # Pr[An B]Pr[C].)

If Adid not say anything about C and B did not say anything
about C, then AN B would not say anything about C.
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Example 2

Flip a fair coin 5 times. Let A, =‘coin nis H', forn=1,...,5.

Then,
Am, An are independent for all m # n.

Also,
A and A3 N As are independent.
Indeed,
1
PI'[A1 N (A3 ﬂA5)] = g = PI'[A1]PI'[A3 ﬂA5]
. Similarly,

A1NAs and A3N AsN As are independent.

This leads to a definition ....
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Mutual Independence

Definition Mutual Independence
(a) The events Ay,...,As are mutually independent if

Pr[ﬁkeKAk] = I'IkeKPr[Ak], forall K C {1 R ,5}

(b) More generally, the events {A;,j € J} are mutually
independent if

Pr(nkekAx] = Nkex Pr[Ag], for all finiteK C J.

Thus, Pf[A1 ﬂAg] = Pr[A1]Pr[A2],
PI’[A1 NAs ﬂA4] = PI'[A1]PI’[A3]PF[A4], e

Example: Flip a fair coin forever. Let A, = ‘coin nis H. Then the
events A, are mutually independent.
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Mutual Independence

Theorem

If the events {A;,j € J} are mutually independent and if Ky and K are
disjoint finite subsets of J, then any event V; defined by {A;,j € K1} is
independent of any event V. defined by {A;,j € K2}.

(b) More generally, if the K, are pairwise disjoint finite subsets of J,
then events V,, defined by {A;,j € Ky} are mutually independent.

Proof:
See Lecture Note 25, Example 2.7. |

For instance, the fact that there are more heads than tails in the first

five flips of a coin is independent of the fact there are fewer heads
than tails in flips 6,...,13.
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Summary.

Bayes’ Rule, Independence, Mutual Independence‘

Main results:

> Bayes’ Rule: Pr[Ap|B] = pmQm/ (P11 + -+ Pmam)-

» Mutual Independence: Events defined by disjoint
collections of mutually independent events are mutually
independent.



