CS70: Jean Walrand: Lecture 23.

Bayes' Rule, Independence, Mutual Independence

CS70: Jean Walrand: Lecture 23.

Bayes' Rule, Independence, Mutual Independence

1. Conditional Probability: Review
2. Bayes' Rule: Another Look
3. Independence
4. Mutual Independence

Conditional Probability: Review

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$, i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are negatively correlated.

Conditional Probability: Review

Recall:

- $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.
- Hence, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B] \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
- A and B are positively correlated if $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- A and B are negatively correlated if $\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A]$,
i.e., if $\operatorname{Pr}[A \cap B]<\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Note: $B \subset A \Rightarrow A$ and B are positively correlated. $(\operatorname{Pr}[A \mid B]=1>\operatorname{Pr}[A])$
- Note: $A \cap B=\emptyset \Rightarrow A$ and B are negatively correlated. $(\operatorname{Pr}[A \mid B]=0<\operatorname{Pr}[A])$

Conditional Probability: Pictures

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b$;

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated. $\operatorname{Pr}[B \mid A]=$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \bar{A}]=b_{2} .
$$

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- Left: A and B are independent. $\operatorname{Pr}[B]=b ; \operatorname{Pr}[B \mid A]=b$.
- Middle: A and B are positively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}>\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{2}, b_{1}\right) .
$$

- Right: A and B are negatively correlated.

$$
\operatorname{Pr}[B \mid A]=b_{1}<\operatorname{Pr}[B \mid \bar{A}]=b_{2} . \text { Note: } \operatorname{Pr}[B] \in\left(b_{1}, b_{2}\right)
$$

Bayes and Biased Coin

Bayes and Biased Coin

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ;
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ;
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ;
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{0.5 \times 0.5+0.5}=\frac{\operatorname{Pr}}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]}
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]} \\
& \quad \approx 0.46
\end{aligned}
$$

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}[A]=0.5 ; \operatorname{Pr}[\bar{A}]=0.5 \\
& \operatorname{Pr}[B \mid A]=0.5 ; \operatorname{Pr}[B \mid \bar{A}]=0.6 ; \operatorname{Pr}[A \cap B]=0.5 \times 0.5 \\
& \operatorname{Pr}[B]=0.5 \times 0.5+0.5 \times 0.6=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& \operatorname{Pr}[A \mid B]=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.5 \times 0.6}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]} \\
& \quad \approx 0.46=\text { fraction of } B \text { that is inside } A
\end{aligned}
$$

Bayes: General Case

Bayes: General Case

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ;
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M} \\
& \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots p_{M} q_{M}}
\end{aligned}
$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{m}\right]=p_{m}, m=1, \ldots, M \\
& \operatorname{Pr}\left[B \mid A_{m}\right]=q_{m}, m=1, \ldots, M ; \operatorname{Pr}\left[A_{m} \cap B\right]=p_{m} q_{m} \\
& \operatorname{Pr}[B]=p_{1} q_{1}+\cdots p_{M} q_{M} \\
& \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots p_{M} q_{M}}=\text { fraction of } B \text { inside } A_{m} .
\end{aligned}
$$

Bayes Rule

Another picture:

Bayes Rule

Another picture:

Bayes Rule

Another picture:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}} .
$$

Why do you have a fever?

Why do you have a fever?

Using Bayes' rule, we find

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola|High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
\end{aligned}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58
$$

$$
\operatorname{Pr}[\text { Ebola|High Fever }]=\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8}
$$

$$
\operatorname{Pr}[\text { Other } \mid \text { High Fever }]=\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Why do you have a fever?

Why do you have a fever?

Our "Bayes' Square" picture:

Why do you have a fever?

Our "Bayes' Square" picture:

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$,

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has

$$
\operatorname{Pr}[\text { Ebola|Fever }] \approx 0 .
$$

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though $\operatorname{Pr}[$ Fever \mid Ebola $]=1$, one has

$$
\operatorname{Pr}[\text { Ebola|Fever }] \approx 0 .
$$

This example shows the importance of the prior probabilities.

Why do you have a fever?

We found

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola|High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

Why do you have a fever?

We found

$$
\begin{aligned}
& \operatorname{Pr}[\text { Flu } \mid \text { High Fever }] \approx 0.58, \\
& \operatorname{Pr}[\text { Ebola } \mid \text { High Fever }] \approx 5 \times 10^{-8}, \\
& \operatorname{Pr}[\text { Other } \mid \text { High Fever }] \approx 0.42
\end{aligned}
$$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.

Why do you have a fever?

We found
$\operatorname{Pr}[$ Flu \mid High Fever $] \approx 0.58$,
$\operatorname{Pr}[$ Ebola \mid High Fever $] \approx 5 \times 10^{-8}$,
$\operatorname{Pr}[$ Other \mid High Fever $] \approx 0.42$

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
'Ebola' is the Maximum Likelihood Estimate (MLE) of the cause: it causes the fever with the largest probability.
Recall that

$$
p_{m}=\operatorname{Pr}\left[A_{m}\right], q_{m}=\operatorname{Pr}\left[B \mid A_{m}\right], \operatorname{Pr}\left[A_{m} \mid B\right]=\frac{p_{m} q_{m}}{p_{1} q_{1}+\cdots+p_{M} q_{M}}
$$

Thus,

- MAP $=$ value of m that maximizes $p_{m} q_{m}$.
- MLE $=$ value of m that maximizes q_{m}.

Independence

Definition: Two events A and B are independent if

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events A and B are independent if and only if

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed:

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A]$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A] \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Independence

 Recall :
A and B are independent

Independence

 Recall :
A and B are independent

$$
\Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]
$$

Independence

 Recall :A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent:

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.

Independence

Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
(A_{2}, \bar{B}) are independent:

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{1}, B\right)$ are not independent:

Independence
 Recall :

A and B are independent

$$
\begin{aligned}
& \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
\end{aligned}
$$

Consider the example below:

$\left(A_{2}, B\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid B\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{2}, \bar{B}\right)$ are independent: $\operatorname{Pr}\left[A_{2} \mid \bar{B}\right]=0.5=\operatorname{Pr}\left[A_{2}\right]$.
$\left(A_{1}, B\right)$ are not independent: $\operatorname{Pr}\left[A_{1} \mid B\right]=\frac{0.1}{0.5}=0.2 \neq \operatorname{Pr}\left[A_{1}\right]=0.25$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent;

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent;

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $\mathrm{H}^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent; $A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.

Pairwise Independence

Flip two fair coins. Let

- $A=$ 'first coin is $\mathrm{H}^{\prime}=\{H T, H H\}$;
- $B=$ 'second coin is $H^{\prime}=\{T H, H H\}$;
- $C=$ 'the two coins are different' $=\{T H, H T\}$.

A, C are independent; B, C are independent;
$A \cap B, C$ are not independent. $(\operatorname{Pr}[A \cap B \cap C]=0 \neq \operatorname{Pr}[A \cap B] \operatorname{Pr}[C]$.)
If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Example 2

Flip a fair coin 5 times.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,

$$
A_{m}, A_{n} \text { are independent for all } m \neq n .
$$

Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

. Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.

Example 2

Flip a fair coin 5 times. Let $A_{n}=$ 'coin n is H^{\prime}, for $n=1, \ldots, 5$.
Then,
A_{m}, A_{n} are independent for all $m \neq n$.
Also,
A_{1} and $A_{3} \cap A_{5}$ are independent.
Indeed,

$$
\operatorname{Pr}\left[A_{1} \cap\left(A_{3} \cap A_{5}\right)\right]=\frac{1}{8}=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3} \cap A_{5}\right]
$$

. Similarly,
$A_{1} \cap A_{2}$ and $A_{3} \cap A_{4} \cap A_{5}$ are independent.
This leads to a definition

Mutual Independence

Definition Mutual Independence

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Thus, $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right]$,

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Thus, $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right]$,
$\operatorname{Pr}\left[A_{1} \cap A_{3} \cap A_{4}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3}\right] \operatorname{Pr}\left[A_{4}\right], \ldots$.

Mutual Independence

Definition Mutual Independence
(a) The events A_{1}, \ldots, A_{5} are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all } K \subseteq\{1, \ldots, 5\}
$$

(b) More generally, the events $\left\{A_{j}, j \in J\right\}$ are mutually independent if

$$
\operatorname{Pr}\left[\cap_{k \in K} A_{k}\right]=\Pi_{k \in K} \operatorname{Pr}\left[A_{k}\right], \text { for all finite } K \subseteq J
$$

Thus, $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2}\right]$,
$\operatorname{Pr}\left[A_{1} \cap A_{3} \cap A_{4}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{3}\right] \operatorname{Pr}\left[A_{4}\right], \ldots$.
Example: Flip a fair coin forever. Let $A_{n}=$ 'coin n is H.' Then the events A_{n} are mutually independent.

Mutual Independence

Theorem

Mutual Independence

Theorem
If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then

Mutual Independence

Theorem
If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then any event V_{1} defined by $\left\{A_{j}, j \in K_{1}\right\}$ is independent of any event V_{2} defined by $\left\{A_{j}, j \in K_{2}\right\}$.

Mutual Independence

Theorem
If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then any event V_{1} defined by $\left\{A_{j}, j \in K_{1}\right\}$ is independent of any event V_{2} defined by $\left\{A_{j}, j \in K_{2}\right\}$.
(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then events V_{n} defined by $\left\{A_{j}, j \in K_{n}\right\}$ are mutually independent.

Mutual Independence

Theorem
If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then any event V_{1} defined by $\left\{A_{j}, j \in K_{1}\right\}$ is independent of any event V_{2} defined by $\left\{A_{j}, j \in K_{2}\right\}$.
(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then events V_{n} defined by $\left\{A_{j}, j \in K_{n}\right\}$ are mutually independent.

Proof:

See Lecture Note 25, Example 2.7.

Mutual Independence

Theorem

If the events $\left\{A_{j}, j \in J\right\}$ are mutually independent and if K_{1} and K_{2} are disjoint finite subsets of J, then any event V_{1} defined by $\left\{\boldsymbol{A}_{j}, j \in K_{1}\right\}$ is independent of any event V_{2} defined by $\left\{A_{j}, j \in K_{2}\right\}$.
(b) More generally, if the K_{n} are pairwise disjoint finite subsets of J, then events V_{n} defined by $\left\{A_{j}, j \in K_{n}\right\}$ are mutually independent.

Proof:

See Lecture Note 25, Example 2.7.
For instance, the fact that there are more heads than tails in the first five flips of a coin is independent of the fact there are fewer heads than tails in flips $6, \ldots, 13$.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem. Fact

Mutual Independence: Complements

Here is one step in the proof of the previous theorem. Fact
Assume A, B, C, \ldots, G, H are mutually independent.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem. Fact
Assume A, B, C, \ldots, G, H are mutually independent. Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem. Fact
Assume A, B, C, \ldots, G, H are mutually independent. Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.

Fact

Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{c}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.

Proof:

We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H=$
$A \cap B^{c} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{c} \cap C \cap \cdots \cap G \cap H$.

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H=$
$A \cap B^{C} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{C} \cap C \cap \cdots \cap G \cap H$. Hence,

$$
\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]
$$

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H=$
$A \cap B^{c} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{c} \cap C \cap \cdots \cap G \cap H$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right] \\
& \quad=\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap F \cap H\right]-\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G \cap H\right]
\end{aligned}
$$

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H=$
$A \cap B^{c} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{c} \cap C \cap \cdots \cap G \cap H$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap G^{c} \cap H\right] \\
& =\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap F \cap H\right]-\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G \cap H\right] \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[H]-\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[G] \operatorname{Pr}[H]
\end{aligned}
$$

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{C} \cap C \cap \cdots \cap G^{C} \cap H=$
$A \cap B^{c} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{c} \cap C \cap \cdots \cap G \cap H$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{C} \cap H\right] \\
& =\operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap F \cap H\right]-\operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap G \cap H\right] \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[H]-\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[G] \operatorname{Pr}[H] \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[H](1-\operatorname{Pr}[G])
\end{aligned}
$$

Mutual Independence: Complements

Here is one step in the proof of the previous theorem.
Fact
Assume A, B, C, \ldots, G, H are mutually independent.
Then, $A, B^{C}, C, \ldots, G^{C}, H$ are mutually independent.
Proof:
We show that
$\operatorname{Pr}\left[A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H\right]=\operatorname{Pr}[A] \operatorname{Pr}\left[B^{c}\right] \cdots \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H]$.
Assume that this is true when there are at most n complements.
Base case: $n=0$ true by definition of mutual independence.
Induction step: Assume true for n. Check for $n+1$:
$A \cap B^{c} \cap C \cap \cdots \cap G^{c} \cap H=$
$A \cap B^{c} \cap C \cap \cdots \cap F \cap H \backslash A \cap B^{c} \cap C \cap \cdots \cap G \cap H$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap G^{c} \cap H\right] \\
& =\operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap F \cap H\right]-\operatorname{Pr}\left[A \cap B^{C} \cap C \cap \cdots \cap G \cap H\right] \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[H]-\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[G] \operatorname{Pr}[H] \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}[H](1-\operatorname{Pr}[G]) \\
& =\operatorname{Pr}[A] \operatorname{Pr}\left[B^{C}\right] \cdots \operatorname{Pr}[F] \operatorname{Pr}\left[G^{c}\right] \operatorname{Pr}[H] .
\end{aligned}
$$

Summary.

Bayes' Rule, Independence, Mutual Independence

Summary.

Bayes' Rule, Independence, Mutual Independence

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.

Summary.

Bayes' Rule, Independence, Mutual Independence

Main results:

- Bayes' Rule: $\operatorname{Pr}\left[A_{m} \mid B\right]=p_{m} q_{m} /\left(p_{1} q_{1}+\cdots+p_{M} q_{M}\right)$.
- Mutual Independence: Events defined by disjoint collections of mutually independent events are mutually independent.

