CS70: Jean Walrand: Lecture 22.

> Conditional Probability, Bayes' Rule

1. Review
2. Conditional Probability
3. Bayes' Rule

Review

Setup:

- Random Experiment.

Flip a fair coin twice.

- Probability Space.
- Sample Space: Set of outcomes, Ω.

$$
\Omega=\{1,2,3,4, \ldots, N\}
$$

- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$.

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.
2. $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

- Events: Subsets of Ω; sets of outcomes.
- Probability of Events: $\operatorname{Pr}[A]=\sum_{\omega \in A} \operatorname{Pr}[\omega]$.
- Probability is Additive: $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$ if $A \cap B=\emptyset$.
- Conditional Probability: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$.

More fun with conditional probability.

Toss a red and a blue die, sum is 4, What is probability that red is 1 ?

B is more likely given A.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7 , what is probability that red is 1 ?
Ω : Uniform

$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{6} ;$ versus $\operatorname{Pr}[B]=\frac{1}{6}$.
Observing A does not change your mind about the likelihood of B.

Emptiness..

Suppose I toss 3 balls into 3 bins.
$A=$ "1st bin empty"; $B=$ "2nd bin empty." What is $\operatorname{Pr}[A \mid B]$?

$$
\Omega=\{1,2,3\}^{3}
$$

$$
\omega=(\text { bin of red ball, bin of blue ball, bin of green ball })
$$

$\operatorname{Pr}[B]=\operatorname{Pr}\left[\{(a, b, c) \mid a, b, c \in\{1,3\}]=\operatorname{Pr}\left[\{1,3\}^{3}\right]=\frac{8}{27}\right.$
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[(3,3,3)]=\frac{1}{27}$
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{(1 / 27)}{(8 / 27)}=1 / 8$; vs. $\operatorname{Pr}[A]=\frac{8}{27}$.
A is less likely given B : If second bin is empty the first is more likely to have balls in it.

Gambler's fallacy.

Flip a fair coin 51 times.
$A=$ "first 50 flips are heads"
$B=$ "the 51st is heads"
$\operatorname{Pr}[B \mid A] ?$
$A=\{H H \cdots H T, H H \cdots H H\}$
$B \cap A=\{H H \cdots H H\}$
Uniform probability space.
$\operatorname{Pr}[B \mid A]=\frac{|B \cap A|}{|A|}=\frac{1}{2}$.
Same as $\operatorname{Pr}[B]$.
The likelihood of 51 st heads does not depend on the previous flips.

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Hence,

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] .
$$

Consequently,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B \cap C] & =\operatorname{Pr}[(A \cap B) \cap C] \\
& =\operatorname{Pr}[A \cap B] \operatorname{Pr}[C \mid A \cap B] \\
& =\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid A \cap B]
\end{aligned}
$$

Product Rule

Theorem Product Rule
Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.) Then,

$$
\begin{aligned}
\operatorname{Pr} & {\left[A_{1} \cap \cdots \cap A_{n} \cap A_{n+1}\right] } \\
& =\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right] \\
& =\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right],
\end{aligned}
$$

so that the result holds for $n+1$.

Correlation

An example.
Random experiment: Pick a person at random.
Event A : the person has lung cancer.
Event B : the person is a heavy smoker.
Fact:

$$
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] .
$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Correlation

Event A : the person has lung cancer. Event B : the person is a heavy smoker. $\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A]$.

A second look.
Note that

$$
\begin{aligned}
\operatorname{Pr}[A \mid B]=1.17 \times \operatorname{Pr}[A] & \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=1.17 \times \operatorname{Pr}[A] \\
& \Leftrightarrow \operatorname{Pr}[A \cap B]=1.17 \times \operatorname{Pr}[A] \operatorname{Pr}[B] \\
& \Leftrightarrow \operatorname{Pr}[B \mid A]=1.17 \times \operatorname{Pr}[B] .
\end{aligned}
$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Causality vs. Correlation

Events A and B are positively correlated if

$$
\operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

(E.g., smoking and lung cancer.)
A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving Causality

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).
Some difficulties:

- A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)
More about such questions later. For fun, check " N . Taleb: Fooled by randomness."

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$. Thus,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{N}\right] \operatorname{Pr}\left[B \mid A_{N}\right] .
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Is you coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$
A=\text { 'coin is fair', } B=\text { 'outcome is heads' }
$$

We want to calculate $P[A \mid B]$.
We know $\operatorname{P}[B \mid A]=1 / 2, \operatorname{P}[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,

$$
\begin{aligned}
\operatorname{Pr}[B] & =\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}] \\
& =(1 / 2)(1 / 2)+(1 / 2) 0.6=0.55 .
\end{aligned}
$$

Thus,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6} \approx 0.45 .
$$

Is you coin loaded?

A picture:

Imagine 100 situations, among which $m:=100(1 / 2)(1 / 2)$ are such that A and B occur and $n:=100(1 / 2)(0.6)$ are such that \bar{A} and B occur.
Thus, among the $m+n$ situations where B occurred, there are m where A occurred.

Hence,

$$
\operatorname{Pr}[A \mid B]=\frac{m}{m+n}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6}
$$

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

Imagine 100 situations, among which $100 p_{n} q_{n}$ are such that A_{n} and B occur, for $n=1, \ldots, N$.
Thus, among the $100 \sum_{m} p_{m} q_{m}$ situations where B occurred, there are $100 p_{n} q_{n}$ where A_{n} occurred.

Hence,

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}}
$$

Why do you have a fever?

Using Bayes' rule, we find

$$
\begin{aligned}
\operatorname{Pr}[\text { Flu } \mid \text { High Fever }] & =\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
\operatorname{Pr}[\text { Ebola| } \mid \text { High Fever }] & =\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
\operatorname{Pr}[\text { Other } \mid \text { High Fever }] & =\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test,disease)
A - prostate cancer.
B - positive PSA test.
$-\operatorname{Pr}[A]=0.0016,(.16 \%$ of the male population is affected.)

- $\operatorname{Pr}[B \mid A]=0.80$ (80% chance of positive test with disease.)
- $\operatorname{Pr}[B \mid \bar{A}]=0.10$ (10% chance of positive test without disease.)

From http://www.cpen.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)
Positive PSA test (B). Do I have disease?
$\operatorname{Pr}[A \mid B] ? ? ?$

Bayes Rule.

Using Bayes' rule, we find

$$
P[A \mid B]=\frac{0.0016 \times 0.80}{0.0016 \times 0.80+0.9984 \times 0.10}=.013
$$

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?
Impotence...
Incontinence..
Death.

Summary

Conditional Probability, Bayes' Rule

Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]}
$$

$\operatorname{Pr}\left[A_{n} \mid B\right]=$ posterior probability; $\operatorname{Pr}\left[A_{n}\right]=$ prior probability.

