CS70: Jean Walrand: Lecture 21.

Events, Conditional Probability

- 1. Probability Basics Review
- 2. Events
- 3. Conditional Probability

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω. $Ω = \{HH, HT, TH, TT\}$

(Note: Not $\Omega = \{H, T\}$ with two picks!)

- ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Set notation review

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Definition:

- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

Uniform Probability Space

Event: Example

$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[Red] + Pr[Green].$$

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

 $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$

Event, E, "exactly one heads": $\{TH, HT\}$.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?
 - \bullet $\omega_1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or$
 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$$|E_2| = {20 \choose 10} = 184,756.$$

Probability of *n* heads in 100 coin tosses.

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

Event
$$E_n = n$$
 heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}$$
.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

Calculation.

Stirling formula (for large n):

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

Consequences of Additivity

Theorem

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$$

(inclusion-exclusion property)

(b)
$$Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$$
 (union bound)

(c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

Proof:

(b) is obvious.

See next two slides for (a) and (c).

Inclusion/Exclusion

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Roll a Red and a Blue Die.

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6' $E_1 \cup E_2$ = 'At least one die shows 6'

$$Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36}, Pr[E_1 \cup E_2] = \frac{11}{36}.$$

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A =first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads. The probability of B given A is 1/2.

A similar example.

Two coin flips. At least one of the flips is heads.

→ Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads. The probability of B given A is 1/3.

Conditional Probability: A non-uniform example

$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\mathsf{Red}|\mathsf{Red} \ \mathsf{or} \ \mathsf{Green}] = \frac{3}{7} = \frac{Pr[\mathsf{Red} \cap (\mathsf{Red} \ \mathsf{or} \ \mathsf{Green})]}{Pr[\mathsf{Red} \ \mathsf{or} \ \mathsf{Green}]}$$

Another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

Yet another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{2, 3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_2 + p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

Conditional Probability.

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Summary

Events, Conditional Probability

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$