CS70: Jean Walrand: Lecture 21.

Events, Conditional Probability

1. Probability Basics Review
2. Events
3. Conditional Probability

Probability Basics Review

Setup:

- Random Experiment. Flip a fair coin twice.
- Probability Space.
- Sample Space: Set of outcomes, Ω.
$\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$. $\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[T T]=1 / 4$

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.
2. $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Set notation review

Figure: Two events

Figure: Complement (not)

Figure: Union (or)

Figure: Intersection (and)

Figure: Difference (A, not B)

Figure: Symmetric difference (only one)

Probability of exactly one 'heads' in two coin flips?

 Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': HT, TH.This leads to a definition! Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$.
- The probability of E is defined as $\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.

Uniform Probability Space

Event: Example

$\Omega=\{$ Red, Green, Yellow, Blue $\}$
$\operatorname{Pr}[$ Red $]=\frac{3}{10}, \operatorname{Pr}[$ Green $]=\frac{4}{10}$, etc.
$E=\{$ Red, Green $\} \Rightarrow \operatorname{Pr}[E]=\frac{3+4}{10}=\frac{3}{10}+\frac{4}{10}=\operatorname{Pr}[$ Red $]+\operatorname{Pr}[$ Green $]$.

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space:
$\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega=$ set of 20 fair coin tosses.
$\Omega=\{T, H\}^{20} \equiv\{0,1\}^{20} ;|\Omega|=2^{20}$.

- What is more likely?
- $\omega_{1}:=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)$, or
- $\omega_{2}:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $\operatorname{Pr}\left[\omega_{1}\right]=\operatorname{Pr}\left[\omega_{2}\right]=\frac{1}{|\Omega|}$.

- What is more likely?
$\left(E_{1}\right)$ Twenty Hs out of twenty, or
$\left(E_{2}\right)$ Ten Hs out of twenty?
Answer: Ten Hs out of twenty.
Why? There are many sequences of 20 tosses with ten Hs ; only one with twenty Hs. $\Rightarrow \operatorname{Pr}\left[E_{1}\right]=\frac{1}{|\Omega|} \ll \operatorname{Pr}\left[E_{2}\right]=\frac{\left|E_{2}\right|}{|\Omega|}$.

$$
\left|E_{2}\right|=\binom{20}{10}=184,756
$$

Probability of n heads in 100 coin tosses.

$$
\Omega=\{H, T\}^{100} ;|\Omega|=2^{100}
$$

Event $E_{n}=' n$ heads'; $\left|E_{n}\right|=\binom{100}{n}$
$p_{n}:=\operatorname{Pr}\left[E_{n}\right]=\frac{\left|E_{n}\right|}{|\Omega|}=\frac{\binom{100}{n}}{2^{100}}$
Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.

Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega=$ set of 100 coin tosses $=\{H, T\}^{100}$. $|\Omega|=2 \times 2 \times \cdots \times 2=2^{100}$.
Uniform probability space: $\operatorname{Pr}[\omega]=\frac{1}{2^{100}}$.
Event $E=$ "100 coin tosses with exactly 50 heads"
$|E|$?
Choose 50 positions out of 100 to be heads. $|E|=\binom{100}{50}$.

$$
\operatorname{Pr}[E]=\frac{\binom{100}{50}}{2^{100}}
$$

Calculation.

Stirling formula (for large n):

$$
\begin{gathered}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} . \\
\binom{2 n}{n} \approx \frac{\sqrt{4 \pi n}(2 n / e)^{2 n}}{\left[\sqrt{2 \pi n}(n / e)^{n}\right]^{2}} \approx \frac{4^{n}}{\sqrt{\pi n}} . \\
\operatorname{Pr}[E]=\frac{|E|}{|\Omega|}=\frac{|E|}{2^{2 n}}=\frac{1}{\sqrt{\pi n}}=\frac{1}{\sqrt{50 \pi}} \approx .08 .
\end{gathered}
$$

Exactly 50 heads in 100 coin tosses.

Probability is Additive

Theorem
(a) If events A and B are disjoint, i.e., $A \cap B=\emptyset$, then

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B] .
$$

(b) If events A_{1}, \ldots, A_{n} are pairwise disjoint, i.e., $A_{k} \cap A_{m}=\emptyset, \forall k \neq m$, then

$$
\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right]=\operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right] .
$$

Proof:

Obvious.

Consequences of Additivity

Theorem

(a) $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$;
(inclusion-exclusion property)
(b) $\operatorname{Pr}\left[A_{1} \cup \cdots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{n}\right]$;
(union bound)
(c) If $A_{1}, \ldots A_{N}$ are a partition of Ω, i.e., pairwise disjoint and $\cup_{m=1}^{N} A_{m}=\Omega$, then

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[B \cap A_{1}\right]+\cdots+\operatorname{Pr}\left[B \cap A_{N}\right] .
$$

(law of total probability)

Proof:

(b) is obvious.

See next two slides for (a) and (c).

Inclusion/Exclusion

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

$$
A \cap B
$$

$$
\begin{aligned}
\operatorname{Pr}[A] & =x+y \\
\operatorname{Pr}[B] & =y+z \\
\operatorname{Pr}[A \cap B] & =y \\
\operatorname{Pr}[A \cup B] & =x+y+z
\end{aligned}
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.

Roll a Red and a Blue Die.

$E_{1}=$ 'Red die shows 6 '; $E_{2}=$ 'Blue die shows 6'
$E_{1} \cup E_{2}=$ 'At least one die shows 6'
$\operatorname{Pr}\left[E_{1}\right]=\frac{6}{36}, \operatorname{Pr}\left[E_{2}\right]=\frac{6}{36}, \operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\frac{11}{36}$.

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; Uniform probability space.
Event $A=$ first flip is heads: $A=\{H H, H T\}$.

New sample space: A; uniform still.

Event $B=$ two heads.
The probability of two heads if the first flip is heads. The probability of B given A is $1 / 2$.

A similar example.

Two coin flips. At least one of the flips is heads.
\rightarrow Probability of two heads?
$\Omega=\{H H, H T, T H, T T\}$; uniform.
Event $A=$ at least one flip is heads. $A=\{H H, H T, T H\}$.

New sample space: A; uniform still.

Event $B=$ two heads.
The probability of two heads if at least one flip is heads. The probability of B given A is $1 / 3$.

Conditional Probability: A non-uniform example

$$
\Omega=\{\text { Red, Green, Yellow, Blue }\}
$$

$\operatorname{Pr}[\operatorname{Red} \mid \operatorname{Red}$ or Green $]=\frac{3}{7}=\frac{\operatorname{Pr}[\operatorname{Red} \cap(\text { Red or Green })]}{\operatorname{Pr}[\text { Red or Green }]}$

Another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{3,4\}, B=\{1,2,3\}$.

Yet another non-uniform example

Consider $\Omega=\{1,2, \ldots, N\}$ with $\operatorname{Pr}[n]=p_{n}$.
Let $A=\{2,3,4\}, B=\{1,2,3\}$.

$$
\operatorname{Pr}[A \mid B]=\frac{p_{2}+p_{3}}{p_{1}+p_{2}+p_{3}}=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

Conditional Probability.

Definition: The conditional probability of B given A is

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]} .
$$

Summary

Events, Conditional Probability

Key Ideas:

- Conditional Probability:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

- All these are possible:

$$
\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] .
$$

