CS70: Jean Walrand: Lecture 20.
Modeling Uncertainty: Probability Space

1. Key Points
2. Random Experiments
3. Probability Space

Key Points

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
- Buy stocks
- Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)
- Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
- Play games of chance
- Design randomized algorithms
- Probability
- Models knowledge about uncertainty
- Discovers best way to use that knowledge in making decisions

Random Experiment: Flip one Fair Coin Flip a fair coin:

What do we mean by the likelihood of tails is 50% ?
Two interpretations:

- Single coin flip: 50% chance of 'tails' [subjectivist]

Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield 'tails' [frequentist] Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

The Magic of Probability
Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear you to think clearly about uncertainty.
Your cost: focused attention and practice on examples and problems.
Random Experiment: Flip one Fair Coin
Flip a fair coin: model

Physical Experiment

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple
- A set Ω of outcomes: $\Omega=\{H, T\}$.
- A probability assigned to each outcome
$\operatorname{Pr}[H]=0.5, \operatorname{Pr}[T]=0.5$.

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in(0,1)$ and $T: 1-p$
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction $1-p$ of tails

- Question: How can one figure out p ? Flip many times
- Tautolgy? No: Statistical regularity!

Flip Glued Coins
Flips two coins glued together side by side:

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model

Flip Two Fair Coins

- Possible outcomes: $\{H H, H T, T H, T T\} \equiv\{H, T\}^{2}$
- Note: $A \times B:=\{(a, b) \mid a \in A, b \in B\}$ and $A^{2}:=A \times A$.
- Likelihoods: $1 / 4$ each.

Flip two Attached Coins

Flips two coins attached by a spring

- Possible outcomes: $\{H H, H T, T H, T T\}$.
- Likelihoods: $H H: 0.4, H T: 0.1, T H: 0.1, T T: 0.4$.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.

Flipping Two Coins

Here is a way to summarize the four random experiments:

[1]

[2]

[3]

[4]

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1 ;
- Fair coins: [1]; Glued coins: [3], [4];

Spring-attached coins: [2];

Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
$\{1,2,3,4,5,6\}^{2}=\{(a, b) \mid 1 \leq a, b \leq 6\}$.
- Likelihoods: $1 / 36$ for each.

Flipping Two Coins

Here is a way to summarize the four random experiments:

[1]

[2]

[3]

[4]

Important remarks:

- Each outcome describes the two coins.
- E.g., $H T$ is one outcome of the experiment.
- It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set
- Indeed, this viewpoint misses the relationship between the two flips.
- Each $\omega \in \Omega$ describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Probability Space.

1. A "random experiment":
(a) Flip a biased coin;
(a) Fip a biased coin
(b) Flip two fair coins
2. A set of possible outcomes: Ω
(a) $\Omega=\{H, T\}$;
(b) $\Omega=\{H H, H T, T H, T T\} ;|\Omega|=4$;
(c) $\Omega=\{A \wedge A \diamond A \Leftrightarrow A \subset K \backsim A \wedge A \diamond A \leftrightarrow A \cup Q \wedge, \ldots\}$ $|\Omega|=\binom{52}{5}$.
3. Assign a probability to each outcome: $\operatorname{Pr}: \Omega \rightarrow[0,1]$
(a) $\operatorname{Pr}[H]=p, \operatorname{Pr}[T]=1-p$ for some $p \in[0,1]$
(b) $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$
(c) $\operatorname{Pr}[A \backslash A \diamond A \otimes A \bigcirc K ৯]=\cdots=1 /\binom{52}{5}$

Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{T T \cdots T, T T \cdots H, \ldots, H H \cdots H\}$

Thus, 2^{n} possible outcomes.

- Note: $\{T T \cdots T, T T \cdots H, \ldots, H H \cdots H\}=\{H, T\}^{n}$ $A^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1} \in A, \ldots, a_{n} \in A\right\} .\left|A^{n}\right|=|A|^{n}$.
- Likelihoods: $1 / 2^{n}$ each

Probability Space: formalism.

Ω is the sample space.

$\omega \in \Omega$ is a sample point. (Also called an outcome.)
Sample point ω has a probability $\operatorname{Pr}[\omega]$ where

- $0 \leq \operatorname{Pr}[\omega] \leq 1$;
- $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Sample Space

[^0]
Probability Space: Formalism.

In a uniform probability space each outcome ω is equally probable: $\operatorname{Pr}[\omega]=\frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.

Probability Space: Formalism
Physical model of a general non-uniform probability space:

Physical experiment

Probability model

The roulette wheel stops in sector ω with probability p_{ω}.

$$
\Omega=\{1,2,3, \ldots, N\}, \operatorname{Pr}[\omega]=p_{\omega} .
$$

Probability Space: Formalism

Simplest physical model of a uniform probability space:

Probability model

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
$\Omega=\{$ white, red, yellow, grey, purple, blue, maroon, green $\}$ $\operatorname{Pr}[$ blue $]=\frac{1}{8}$.

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice

$$
\text { - } \Omega=\{H H, T H, H T, T T\}
$$

- The experiment selects one of the elements of Ω
- In this case, its would be wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets $H H$ or $T T$ with probability 50% each. This is not captured by 'picking two outcomes.'

Probability Space: Formalism
Simplest physical model of a non-uniform probability space

Probability model

$$
\Omega=\{\text { Red, Green, Yellow, Blue }\}
$$

$$
\operatorname{Pr}[\operatorname{Red}]=\frac{3}{10}, \operatorname{Pr}[\text { Green }]=\frac{4}{10}, \text { etc } .
$$

Note: Probabilities are restricted to rational numbers: $\frac{N_{k}}{N}$.

Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega ; \operatorname{Pr}[\omega] \in[0,1] ; \sum_{\omega} \operatorname{Pr}[\omega]=1$.
3. Uniform Probability Space: $\operatorname{Pr}[\omega]=1 /|\Omega|$ for all $\omega \in \Omega$.

[^0]: Samples (Outcomes)

