What's to come?

What's to come? Probability.

What's to come? Probability.

A bag contains:

What's to come? Probability.

A bag contains:

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue.

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total.

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total. Divide.

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total. Divide.

Today:

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total. Divide.

Today: Counting!

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

Today: Counting!

Later this week: Probability.

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

Today: Counting!

Later this week: Probability. Professor Walrand.

Outline

- 1. Counting.
- 2. Tree
- 3. Rules of Counting
- 4. Sample with/without replacement where order does/doesn't matter.

How many outcomes possible for *k* coin tosses? How many handshakes for *n* people? How many 10 digit numbers? How many 10 digit numbers without repeating digits?

How many 3-bit strings?

How many 3-bit strings?

How many different sequences of three bits from $\{0,1\}$?

How many 3-bit strings? How many different sequences of three bits from $\{0,1\}$? How would you make one sequence?

8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

How many 3-bit strings? How many different sequences of three bits from $\{0,1\}$? How would you make one sequence? How many different ways to do that making?

8 3-bit srings!

 n_1

Objects made by choosing from n_1 , then n_2 , ..., then n_k the number of objects is $n_1 \times n_2 \cdots \times n_k$.

In picture, $2 \times 2 \times 3 = 12$

Objects made by choosing from n_1 , then n_2 , ..., then n_k the number of objects is $n_1 \times n_2 \cdots \times n_k$.

In picture, $2 \times 2 \times 3 = 12$

Using the first rule..

How many outcomes possible for k coin tosses?

Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice,
How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ...

How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ... 2

How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ... 2×2

How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots$

How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2$

How many outcomes possible for *k* coin tosses? 2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice,

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10\,$

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... 10 \times

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10\times10\cdots$

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10$

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10 = 10^k$

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10 = 10^k$

How many *n* digit base *m* numbers?

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10 = 10^k$

How many *n* digit base *m* numbers?

m ways for first,

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10 = 10^k$

How many *n* digit base *m* numbers?

m ways for first, m ways for second, ...

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ... $2 \times 2 \cdots \times 2 = 2^k$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ... $10 \times 10 \cdots \times 10 = 10^k$

How many *n* digit base *m* numbers?

m ways for first, m ways for second, ... m^n

How many functions f mapping S to T?

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$,

How many functions *f* mapping *S* to *T*?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ...

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient,

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ...

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ... $...p^{d+1}$

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ... $...p^{d+1}$

p values for first point,

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ... $...p^{d+1}$

p values for first point, p values for second, ...

How many functions f mapping S to T?

|T| ways to choose for $f(s_1)$, |T| ways to choose for $f(s_2)$, ... $\dots |T|^{|S|}$

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ... $\dots p^{d+1}$

p values for first point, p values for second, ... $\dots p^{d+1}$

How many 10 digit numbers without repeating a digit?

How many 10 digit numbers **without repeating a digit**? 10 ways for first,

How many 10 digit numbers **without repeating a digit**? 10 ways for first, 9 ways for second,

How many 10 digit numbers **without repeating a digit**? 10 ways for first, 9 ways for second, 8 ways for third,

How many 10 digit numbers **without repeating a digit**? 10 ways for first, 9 ways for second, 8 ways for third, ...

How many 10 digit numbers **without repeating a digit**? 10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$
How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

...
$$n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$$
.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

... $n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

...
$$n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$$
.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

...
$$n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$$
.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first, n-1 ways for second,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

... $n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first, n-1 ways for second, n-2 ways for third,

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

... $n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first, n-1 ways for second, n-2 ways for third, ...

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... $10 * 9 * 8 \cdots * 1 = 10!.^{1}$

How many different samples of size k from n numbers without replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

...
$$n * (n-1) * (n-2) \cdot * (n-k+1) = \frac{n!}{(n-k)!}$$
.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first, n-1 ways for second, n-2 ways for third, ...

...
$$n * (n-1) * (n-2) \cdot *1 = n!$$
.

How many one-to-one functions from *S* to *S*.

How many one-to-one functions from *S* to *S*. |S| choices for $f(s_1)$,

How many one-to-one functions from *S* to *S*. |S| choices for $f(s_1)$, |S| - 1 choices for $f(s_2)$, ...

How many one-to-one functions from *S* to *S*. |S| choices for $f(s_1)$, |S| - 1 choices for $f(s_2)$, ...

How many one-to-one functions from *S* to *S*. |S| choices for $f(s_1)$, |S| - 1 choices for $f(s_2)$, ... So total number is $|S| \times |S| - 1 \cdots 1 = |S|!$

How many one-to-one functions from S to S.

|S| choices for $f(s_1)$, |S| - 1 choices for $f(s_2)$, ...

So total number is $|S| \times |S| - 1 \cdots 1 = |S|!$ A one-to-one function is a permutation!

How many poker hands?

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands? $52 \times 51 \times 50 \times 49 \times 48$

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands? $52 \times 51 \times 50 \times 49 \times 48$???

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52 \times 51 \times 50 \times 49 \times 48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same?

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52\times51\times50\times49\times48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same? **Second Rule of Counting:** If order doesn't matter count ordered objects and then divide by number of orderings.²

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52\times51\times50\times49\times48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same? **Second Rule of Counting:** If order doesn't matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: 5!.

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52\times51\times50\times49\times48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same? **Second Rule of Counting:** If order doesn't matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: 5!.

 $\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}$

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52\times51\times50\times49\times48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same? **Second Rule of Counting:** If order doesn't matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: 5!.

Can write as	$52 \times 51 \times 50 \times 49 \times 48$
	5!
	52!
	$\overline{5! \times 47!}$

²When each unordered object corresponds equal numbers of ordered objects.

How many poker hands?

 $52\times51\times50\times49\times48$???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same? **Second Rule of Counting:** If order doesn't matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: 5!.

Can write as	$52 \times 51 \times 50 \times 49 \times 48$
	5!
	52!
	5!×47!

Generic: ways to choose 5 out of 52 possibilities.

²When each unordered object corresponds equal numbers of ordered objects.

$$n \times (n-1)$$

$$\frac{n \times (n-1)}{2}$$

$$\frac{n\times(n-1)}{2} = \frac{n!}{(n-2)!\times 2}$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}$$

$$n \times (n-1) \times (n-2)$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}$$

$$\frac{n\times(n-1)\times(n-2)}{3!}$$
Choose 2 out of n?

$$\frac{n\times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2} = \frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose k out of n?

$$\frac{n!}{(n-k)!}$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2} = \frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose k out of n?

$$\frac{n!}{(n-k)!}$$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2} = \frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose k out of n?

 $\frac{n!}{(n-k)! \times k!}$

Choose 2 out of n?

$$\frac{n\times(n-1)}{2} = \frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose k out of n?

 $\frac{n!}{(n-k)! \times k!}$

Notation: $\binom{n}{k}$ and pronounced "*n* choose *k*."

Simple Practice.

How many orderings of letters of CAT? 3 ways to choose first letter, 2 ways to choose second, 1 for last. \implies 3 \times 2 \times 1 = 3! orderings How many orderings of the letters in ANAGRAM? Ordered, except for A! total orderings of 7 letters. 7! total "extra counts" or orderings of two A's? 3! Total orderings? $\frac{1}{31}$ How many orderings of MISSISSIPPI? 4 S's. 4 l's. 2 P's.

11 letters total!

11! ordered objects!

 $4! \times 4! \times 2!$ ordered objects per "unordered object"

 $\implies \frac{11!}{4!4!2!}.$

Sample k items out of n

Sample *k* items out of *n* Without replacement:

Sample *k* items out of *n* Without replacement: Order matters:

Sample *k* items out of *n* Without replacement: Order matters: $n \times$

Sample k items out of n

Without replacement: Order matters: $n \times n - 1 \times n - 2 \dots$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$

Order does not matter:

Second Rule: divide by number of orders

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$

Order does not matter:

Second Rule: divide by number of orders - "k!"

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

$$\implies \frac{n!}{(n-k)!k!}.$$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter: Second Rule: divide by number of orders - "k!" $\implies \frac{n!}{(n-k)!k!}$.

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter: Second Rule: divide by number of orders - "k!" $\implies \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

With Replacement.

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter: Second Rule: divide by number of orders – "k!" $\implies \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

With Replacement. Order matters: *n*

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter: Second Rule: divide by number of orders – "k!" $\implies \frac{n!}{(n-k)!k!}$.

"*n* choose *k*"

With Replacement.

Order matters: $n \times n$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter: Second Rule: divide by number of orders – "k!" $\implies \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times ... n = n^k$ Order does not matter:

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times ... n = n^k$ Order does not matter: Second rule

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times ... n = n^k$ Order does not matter: Second rule ???

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times ... n = n^k$ Order does not matter: Second rule ???

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Second Rule: divide by number of orders - "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it. Set: 1,2,2

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Order does not matter.

Second Rule: divide by number of orders – "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \dots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3	3! orderings map to it.
Set: 1,2,2	$\frac{3!}{2!}$ orderings map to it.

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Order does not matter.

Second Rule: divide by number of orders – "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \dots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3	3! orderings map to it.
Set: 1,2,2	$\frac{3!}{2!}$ orderings map to it.

Sample k items out of n

Without replacement:

Order matters: $n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$ Order does not matter:

Order does not matter:

Second Rule: divide by number of orders – "k!"

 $\implies \frac{n!}{(n-k)!k!}.$ "*n* choose *k*"

With Replacement.

Order matters: $n \times n \times \ldots n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3	3! orderings map to it.
Set: 1,2,2	$\frac{3!}{2!}$ orderings map to it.

How do we deal with this situation?!?!

Stars and bars....

How many ways can Bob and Alice split 5 dollars?

Stars and bars....

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or $Alice(2^5)$, divide out order
How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice (2^5) , divide out order ???

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice (2^5) , divide out order ???

5 dollars for Bob and 0 for Alice:

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice:

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice:

5 ordered sets: (*A*, *B*, *B*, *B*, *B*) ; (*B*, *A*, *B*, *B*, *B*); ...

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice: 5 ordered sets: (*A*, *B*, *B*, *B*, *B*); (*B*, *A*, *B*, *B*, *B*); ...

Well, we can list the possibilities. 0+5, 1+4, 2+3, 3+2, 4+1, 5+0.

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice: 5 ordered sets: (*A*, *B*, *B*, *B*, *B*); (*B*, *A*, *B*, *B*, *B*); ...

Well, we can list the possibilities. 0+5, 1+4, 2+3, 3+2, 4+1, 5+0.

For 2 numbers adding to k, we get k + 1.

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice: 5 ordered sets: (*A*, *B*, *B*, *B*, *B*); (*B*, *A*, *B*, *B*, *B*); ...

Well, we can list the possibilities. 0+5, 1+4, 2+3, 3+2, 4+1, 5+0.

For 2 numbers adding to k, we get k + 1.

For 3 numbers adding to *k*?

How many ways to add up *n* numbers to equal *k*?

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |$

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

```
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: \star \star |\star|
```

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: **|*|**.

Alice: 0, Bob: 1, Eve: 4.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: **|*|**.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

```
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: \star\star|\star|\star\star.
Alice: 0, Bob: 1, Eve: 4.
```

Stars and Bars: | * |

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |*|****.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |*|****.

Each split \implies a sequence of stars and bars.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |*|****.

Each split \implies a sequence of stars and bars. Each sequence of stars and bars \implies a split.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |*|****.

Each split \implies a sequence of stars and bars. Each sequence of stars and bars \implies a split.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star \star |\star| \star \star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: |*|****.

Each split \implies a sequence of stars and bars. Each sequence of stars and bars \implies a split.

Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

How many different 5 star and 2 bar diagrams?

How many different 5 star and 2 bar diagrams? 7 positions in which to place the 2 bars.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people.

Ways to add up *n* numbers to sum to *k*?

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people. Ways to add up *n* numbers to sum to *k*? or

" k from n with replacement where order doesn't matter."

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people. Ways to add up *n* numbers to sum to *k*? or

" k from n with replacement where order doesn't matter."

In general, k stars n-1 bars.

** * ··· **.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people. Ways to add up *n* numbers to sum to *k*? or

" k from n with replacement where order doesn't matter."

In general, k stars n-1 bars.

** * ··· **.

n+k-1 positions from which to choose n-1 bar positions.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people. Ways to add up *n* numbers to sum to *k*? or

" k from n with replacement where order doesn't matter."

In general, k stars n-1 bars.

** * ··· **.

n+k-1 positions from which to choose n-1 bar positions.

 $\binom{n+k-1}{n-1}$

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets *S* and *T*, $|S \cup T| = |S| + |T|$

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets *S* and *T*, $|S \cup T| = |S| + |T|$ Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any S and T,

 $|S \cup T| = |S| + |T| - |S \cap T|.$

Example: How many 10-digit phone numbers have 7 as their first or second digit?
Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

S = phone numbers with 7 as first digit.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

S = phone numbers with 7 as first digit. $|S| = 10^9$

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

S = phone numbers with 7 as first digit. $|S| = 10^9$

T = phone numbers with 7 as second digit.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

- S = phone numbers with 7 as first digit. $|S| = 10^9$
- T = phone numbers with 7 as second digit. $|T| = 10^9$.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

- S = phone numbers with 7 as first digit. $|S| = 10^9$
- T = phone numbers with 7 as second digit. $|T| = 10^9$.
- $S \cap T$ = phone numbers with 7 as first and second digit.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

- S = phone numbers with 7 as first digit. $|S| = 10^9$
- T = phone numbers with 7 as second digit. $|T| = 10^9$.
- $S \cap T$ = phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

- S = phone numbers with 7 as first digit. $|S| = 10^9$
- T = phone numbers with 7 as second digit. $|T| = 10^9$.

 $S \cap T$ = phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Answer: $|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8$.

First rule: $n_1 \times n_2 \cdots \times n_3$.

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k .

First rule: $n_1 \times n_2 \cdots \times n_3$.

```
k Samples with replacement from n items: n^k.
Sample without replacement: \frac{n!}{(n-k)!}
```

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

One-to-one rule: equal in number if one-to-one correspondence.

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

Sum Rule: For disjoint sets *S* and *T*, $|S \cup T| = |S| + |T|$

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*"

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

Sum Rule: For disjoint sets *S* and *T*, $|S \cup T| = |S| + |T|$ **Inclusion/Exclusion Rule:** For any *S* and *T*, $|S \cup T| = |S| + |T| - |S \cap T|$.