## Counting and Probability

What's to come?

## Counting and Probability

What's to come? Probability.

## Counting and Probability

What's to come? Probability.
A bag contains:

## Counting and Probability

What's to come? Probability.
A bag contains:

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue.

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total.

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today:

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!
Later this week: Probability.

## Counting and Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!
Later this week: Probability. Professor Walrand.

## Outline

1. Counting.
2. Tree
3. Rules of Counting
4. Sample with/without replacement where order does/doesn't matter.

## Count?

How many outcomes possible for $k$ coin tosses?
How many handshakes for $n$ people?
How many 10 digit numbers?
How many 10 digit numbers without repeating digits?

## Using a tree of possibilities...

How many 3-bit strings?

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ? How would you make one sequence?

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


8 leaves which is $2 \times 2 \times 2$.

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

## Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from $\{0,1\}$ ?
How would you make one sequence?
How many different ways to do that making?


8 leaves which is $2 \times 2 \times 2$. One leaf for each string. 8 3-bit srings!

## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.

## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.


## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.


## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.


## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.


In picture, $2 \times 2 \times 3=12$

## First Rule of Counting: Product Rule

Objects made by choosing from $n_{1}$, then $n_{2}, \ldots$, then $n_{k}$ the number of objects is $n_{1} \times n_{2} \cdots \times n_{k}$.


In picture, $2 \times 2 \times 3=12$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice,

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ... 2

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \ldots$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice,

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
10

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ... $10 \times$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many $n$ digit base $m$ numbers?

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many $n$ digit base $m$ numbers?
$m$ ways for first,

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many $n$ digit base $m$ numbers?
$m$ ways for first, $m$ ways for second, ...

## Using the first rule..

How many outcomes possible for $k$ coin tosses?
2 ways for first choice, 2 ways for second choice, ...
$2 \times 2 \cdots \times 2=2^{k}$
How many 10 digit numbers?
10 ways for first choice, 10 ways for second choice, ...
$10 \times 10 \cdots \times 10=10^{k}$
How many $n$ digit base $m$ numbers?
$m$ ways for first, $m$ ways for second, ...
$m^{n}$

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right)$,

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient,

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient, $p$ ways for second, ...

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient, $p$ ways for second, ... ... $p^{d+1}$

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient, $p$ ways for second, ...
... $p^{d+1}$
$p$ values for first point,

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient, $p$ ways for second, ...
... $p^{d+1}$
$p$ values for first point, $p$ values for second,...

## Functions, polynomials.

How many functions $f$ mapping $S$ to $T$ ?
$|T|$ ways to choose for $f\left(s_{1}\right),|T|$ ways to choose for $f\left(s_{2}\right), \ldots$
$\ldots .|T|^{|S|}$
How many polynomials of degree $d$ modulo $p$ ?
$p$ ways to choose for first coefficient, $p$ ways for second, ...
... $p^{d+1}$
$p$ values for first point, $p$ values for second, ...
$\ldots p^{d+1}$

## Permutations.

${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first,
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second,
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third,
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$ !. ${ }^{1}$

[^0]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice,

[^1]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,

[^2]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second, $n-2$ choices for third,

[^3]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second, $n-2$ choices for third, ...

[^4]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.

[^5]
## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
$n$ ways for first,

$$
{ }^{1} \text { By definition: } 0!=1 . n!=n(n-1)(n-2) \ldots 1 .
$$

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$ !. ${ }^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
$n$ ways for first, $n-1$ ways for second,

$$
{ }^{1} \text { By definition: } 0!=1 . n!=n(n-1)(n-2) \ldots 1 .
$$

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10!.^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
$n$ ways for first, $n-1$ ways for second,
$n-2$ ways for third,

$$
{ }^{1} \text { By definition: } 0!=1 . n!=n(n-1)(n-2) \ldots 1 .
$$

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$ !. ${ }^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
$n$ ways for first, $n-1$ ways for second,
$n-2$ ways for third, ...

$$
{ }^{1} \text { By definition: } 0!=1 . n!=n(n-1)(n-2) \ldots 1 .
$$

## Permutations.

How many 10 digit numbers without repeating a digit?
10 ways for first, 9 ways for second, 8 ways for third, ...
... $10 * 9 * 8 \cdots * 1=10$ !. ${ }^{1}$
How many different samples of size $k$ from $n$ numbers without replacement.
$n$ ways for first choice, $n-1$ ways for second,
$n-2$ choices for third, ...
$\ldots n *(n-1) *(n-2) \cdot *(n-k+1)=\frac{n!}{(n-k)!}$.
How many orderings of $n$ objects are there?
Permutations of $n$ objects.
$n$ ways for first, $n-1$ ways for second,
$n-2$ ways for third, $\ldots$
... $n *(n-1) *(n-2) \cdot * 1=n!$.

$$
{ }^{1} \text { By definition: } 0!=1 . n!=n(n-1)(n-2) \ldots 1 .
$$

## One-to-One Functions.

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.
$|S|$ choices for $f\left(s_{1}\right)$,

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$
So total number is $|S| \times|S|-1 \cdots 1=|S|$ !

## One-to-One Functions.

How many one-to-one functions from $S$ to $S$.
$|S|$ choices for $f\left(s_{1}\right),|S|-1$ choices for $f\left(s_{2}\right), \ldots$
So total number is $|S| \times|S|-1 \cdots 1=|S|$ !
A one-to-one function is a permutation!

## Counting sets..when order doesn't matter.

How many poker hands?
${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

## Counting sets..when order doesn't matter.

How many poker hands?

$$
52 \times 51 \times 50 \times 49 \times 48
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

## Counting sets..when order doesn't matter.

How many poker hands?

$$
52 \times 51 \times 50 \times 49 \times 48 ? ? ?
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10, J$ of spades
and $10, J, Q, K, A$ of spades the same?

[^6]
## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10$, $J$ of spades
and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$

[^7]
## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10$, $J$ of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

[^8]
## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10$, $J$ of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

$$
\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}
$$

[^9]
## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10$, $J$ of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

Can write as...
$\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}$

$$
\frac{52!}{5!\times 47!}
$$

${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

## Counting sets..when order doesn't matter.

How many poker hands?
$52 \times 51 \times 50 \times 49 \times 48$ ???
Are $A, K, Q, 10$, $J$ of spades and $10, J, Q, K, A$ of spades the same?
Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings. ${ }^{2}$
Number of orderings for a poker hand: 5!.

Can write as...

$$
\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}
$$

$$
\frac{52!}{5!\times 47!}
$$

Generic: ways to choose 5 out of 52 possibilities.

[^10]When order doesn't matter.

## When order doesn't matter.

Choose 2 out of $n$ ?

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
n \times(n-1)
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
n \times(n-1) \times(n-2)
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose $k$ out of $n$ ?

$$
\frac{n!}{(n-k)!}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose $k$ out of $n$ ?

$$
\frac{n!}{(n-k)!}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose $k$ out of $n$ ?

$$
\frac{n!}{(n-k)!\times k!}
$$

## When order doesn't matter.

Choose 2 out of $n$ ?

$$
\frac{n \times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}
$$

Choose 3 out of $n$ ?

$$
\frac{n \times(n-1) \times(n-2)}{3!}=\frac{n!}{(n-3)!\times 3!}
$$

Choose $k$ out of $n$ ?

$$
\frac{n!}{(n-k)!\times k!}
$$

Notation: $\binom{n}{k}$ and pronounced " $n$ choose $k$."

## Simple Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
$\Longrightarrow 3 \times 2 \times 1=3$ ! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for A!
total orderings of 7 letters. 7 !
total "extra counts" or orderings of two A's? 3!
Total orderings? $\frac{7!}{3!}$
How many orderings of MISSISSIPPI?
4 S's, 4 l's, 2 P's.
11 letters total!
11! ordered objects!
$4!\times 4!\times 2$ ! ordered objects per "unordered object"
$\Longrightarrow \frac{11!}{4!4!2!}$.

## Sampling...

## Sample $k$ items out of $n$

## Sampling...

Sample $k$ items out of $n$
Without replacement:

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters:

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"

$$
\Longrightarrow \frac{n!}{(n-k)!k!} .
$$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter:

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3 3 ! orderings map to it.

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3 3 ! orderings map to it.
Set: 1,2,2

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3 3 ! orderings map to it.
Set: $1,2,2 \quad \frac{3!}{2!}$ orderings map to it.

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3 3 ! orderings map to it.
Set: $1,2,2 \quad \frac{3!}{2!}$ orderings map to it.

## Sampling...

Sample $k$ items out of $n$
Without replacement:
Order matters: $n \times n-1 \times n-2 \ldots \times n-k+1=\frac{n!}{(n-k)!}$
Order does not matter:
Second Rule: divide by number of orders - " $k$ !"
$\Longrightarrow \frac{n!}{(n-k)!k!}$.
" $n$ choose $k$ "
With Replacement.
Order matters: $n \times n \times \ldots n=n^{k}$
Order does not matter: Second rule ???
Problem: depends on how many of each item we chose!
Set: 1,2,3 3 ! orderings map to it.
Set: $1,2,2 \quad \frac{3!}{2!}$ orderings map to it.
How do we deal with this situation?!?!

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.
4 for Bob and 1 for Alice:

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
Well, we can list the possibilities.
$0+5,1+4,2+3,3+2,4+1,5+0$.

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
Well, we can list the possibilities.
$0+5,1+4,2+3,3+2,4+1,5+0$.
For 2 numbers adding to $k$, we get $k+1$.

## Stars and bars....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice $\left(2^{5}\right)$, divide out order ???
5 dollars for Bob and 0 for Alice:
one ordered set: $(B, B, B, B, B)$.
4 for Bob and 1 for Alice:
5 ordered sets: $(A, B, B, B, B) ;(B, A, B, B, B) ; \ldots$
Well, we can list the possibilities.
$0+5,1+4,2+3,3+2,4+1,5+0$.
For 2 numbers adding to $k$, we get $k+1$.
For 3 numbers adding to $k$ ?

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star$ |

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star|$

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star|$

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star *$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star \star *$.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star * *$.
Each split $\Longrightarrow$ a sequence of stars and bars.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star * *$.
Each split $\Longrightarrow$ a sequence of stars and bars.
Each sequence of stars and bars $\Longrightarrow$ a split.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement. Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star * *$.
Each split $\Longrightarrow$ a sequence of stars and bars.
Each sequence of stars and bars $\Longrightarrow$ a split.

## Stars and Bars.

How many ways to add up $n$ numbers to equal $k$ ?
Or: $k$ choices from set of $n$ possibilities with replacement.
Sample with replacement where order just doesn't matter.
How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: $\star \star \star \star \star$.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: $\star \star|\star| \star \star$.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: $|\star| \star \star * *$.
Each split $\Longrightarrow$ a sequence of stars and bars.
Each sequence of stars and bars $\Longrightarrow$ a split.
Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

## Stars and Bars.

How many different 5 star and 2 bar diagrams?

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people.

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people.
Ways to add up $n$ numbers to sum to $k$ ?

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people.
Ways to add up $n$ numbers to sum to $k$ ? or
" $k$ from $n$ with replacement where order doesn't matter."

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people.
Ways to add up $n$ numbers to sum to $k$ ? or
" $k$ from $n$ with replacement where order doesn't matter."
In general, $k$ stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star * .
$$

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people. Ways to add up $n$ numbers to sum to $k$ ? or
" $k$ from $n$ with replacement where order doesn't matter."
In general, $k$ stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star \star .
$$

$n+k-1$ positions from which to choose $n-1$ bar positions.

## Stars and Bars.

How many different 5 star and 2 bar diagrams?
7 positions in which to place the 2 bars.
$\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split $5 \$$ among 3 people.
Ways to add up $n$ numbers to sum to $k$ ? or
" $k$ from $n$ with replacement where order doesn't matter."
In general, $k$ stars $n-1$ bars.

$$
\star \star|\star| \cdots \mid \star * .
$$

$n+k-1$ positions from which to choose $n-1$ bar positions.

$$
\binom{n+k-1}{n-1}
$$

## Simple Inclusion/Exclusion

## Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$, $|S \cup T|=|S|+|T|-|S \cap T|$.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$, $|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$, $|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$, $|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$, $|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$.

## Simple Inclusion/Exclusion

Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$.
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$.
Answer: $|S|+|T|-|S \cap T|=10^{9}+10^{9}-10^{8}$.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$. Sample without replacement: $\frac{n!}{(n-k)!}$

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide...when possible.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " $n$ choose $k$ "

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " $n$ choose $k$ "

One-to-one rule: equal in number if one-to-one correspondence.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " $n$ choose $k$ "
One-to-one rule: equal in number if one-to-one correspondence.
Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " $n$ choose $k$ "
One-to-one rule: equal in number if one-to-one correspondence.
Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.
Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$

## Summary.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$.
$k$ Samples with replacement from $n$ items: $n^{k}$.
Sample without replacement: $\frac{n!}{(n-k)!}$
Second rule: when order doesn't matter divide..when possible.
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " $n$ choose $k$ "
One-to-one rule: equal in number if one-to-one correspondence.
Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.
Sum Rule: For disjoint sets $S$ and $T,|S \cup T|=|S|+|T|$ Inclusion/Exclusion Rule: For any $S$ and $T$,
$|S \cup T|=|S|+|T|-|S \cap T|$.


[^0]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^1]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^2]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^3]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^4]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^5]:    ${ }^{1}$ By definition: $0!=1 . n!=n(n-1)(n-2) \ldots 1$.

[^6]:    ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^7]:    ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^8]:    ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^9]:    ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

[^10]:    ${ }^{2}$ When each unordered object corresponds equal numbers of ordered objects.

