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What'’s to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?
Count blue. Count total. Divide.
Today: Counting!
Later this week: Probability. Professor Walrand.
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How many outcomes possible for k coin tosses?
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Using a tree of possibilities...

How many 3-bit strings?
How many different sequences of three bits from {0,1}?
How would you make one sequence?
How many different ways to do that making?

0oo o001t o010 o011 100 101 110 111

8 leaves which is 2 x 2 x 2. One leaf for each string.
8 3-bit srings!



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

N



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

/O\ m



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

m
X No

X N3



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

m
X No

X N3



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

m
X No
X N3

In picture, 2 x2x3 =12



First Rule of Counting: Product Rule

Objects made by choosing from ny, then no, ..., then ng
the number of objects is ny x no--- x n.

m
X No
X N3

In picture, 2 x2x3 =12



Using the first rule..

How many outcomes possible for k coin tosses?



Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice,



Using the first rule..

How many outcomes possible for k coin tosses?
2 ways for first choice, 2 ways for second choice, ...



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x%x2



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2%x2...



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2---x2



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...

2x2...x2=2kK



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...

2x2...x2=2kK
How many 10 digit numbers?



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...

2x2... x2=2K
How many 10 digit numbers?
10 ways for first choice,



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10 x



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10---



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x 10



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x 10 = 10K



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x10 = 10¥
How many n digit base m numbers?



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x10 = 10¥
How many n digit base m numbers?

m ways for first,



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x10 = 10¥
How many n digit base m numbers?

m ways for first, m ways for second, ...



Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2x2...x2=2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

10x10--- x10 = 10¥
How many n digit base m numbers?

m ways for first, m ways for second, ...
mf'l
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Functions, polynomials.

How many functions f mapping Sto T?
| T| ways to choose for f(s1), | T| ways to choose for f(sz), ...
TS

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ...
d-+1
..p

p values for first point, p values for second, ...
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One-to-One Functions.

How many one-to-one functions from Sto S.
|S| choices for f(s1), |S| —1 choices for f(sy), ...

So total numberis |S] x |S|—1---1=|S]!
A one-to-one function is a permutation!
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Counting sets..when order doesn’t matter.

How many poker hands?
52 x 51 x 50 x 49 x 48 ??7?

Are A K,Q,10,J of spades
and 10,J,Q, K, A of spades the same?
Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.?
Number of orderings for a poker hand: 5!.
52 x 51 x50 x 49 x 48

51

52!

51 x 47!

Generic: ways to choose 5 out of 52 possibilities.

Can write as...

2When each unordered object corresponds equal numbers of ordered
objects.
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When order doesn’t matter.

Choose 2 out of n?

n><(n—1): n!

2 (n—2)Ix2

Choose 3 out of n?

nx(n—1)x(n-2) n!

3l (n—3)Ix3

Choose k out of n?

n!
(n—K)! x k!

Notation: (}) and pronounced “n choose k.”



Simple Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways to choose second, 1 for last.
= 3x2x1 =23! orderings
How many orderings of the letters in ANAGRAM?
Ordered, except for Al
total orderings of 7 letters. 7!
total “extra counts” or orderings of two A’s? 3!

Total orderings? £

How many orderings of MISSISSIPPI?
4S’s,41s,2P’s.

11 letters total!
11! ordered objects!
4! x 4! x 2! ordered objects per “unordered object”

111
= 411



Sampling...

Sample k items out of n



Sampling...

Sample k items out of n
Without replacement:



Sampling...

Sample k items out of n

Without replacement:
Order matters:



Sampling...

Sample k items out of n

Without replacement:
Order matters: nx



Sampling...

Sample k items out of n

Without replacement:
Order matters: nxn—1xn—2...



Sampling...

Sample k items out of n

Without replacement:
Order matters: nxn—1xn—2... xn—k+1



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2...xn—k+1= (nf!k)!
Order does not matter:
Second Rule: divide by number of orders



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2...xn—k+1= (nf!k)!
Order does not matter:
Second Rule: divide by number of orders — “k!”



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”
With Replacement.



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: n



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nx n



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter:



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”
n!

= Rk
“n choose k”
With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!
Set: 1,2,3



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!
Set: 1,2,3 3! orderings map to it.



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.
Set: 1,2,2



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.
Set: 1,2,2 3 orderings map to it.



Sampling...

Sample k items out of n
Without replacement:

Order matters: nxn—1xn—2... xn—k+1= (nf!k)!
Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.
Set: 1,2,2 3 orderings map to it.



Sampling...

Sample k items out of n

Without replacement:
Order matters: nxn—1xn—2... xn—Kk+1= 0%

Order does not matter:

Second Rule: divide by number of orders — “k!”

|
= 7(n—7()!k!'

“n choose k”
With Replacement.

Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it.
Set: 1,2,2 3 orderings map to it.

How do we deal with this situation?!?!
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Stars and Bars.

How many ways to add up n numbers to equal k?

Or: k choices from set of n possibilities with replacement.
Sample with replacement where order just doesn’t matter.

How many ways can Alice, Bob, and Eve split 5 dollars.
Think of Five dollars as Five stars: xxxxx.

Alice: 2, Bob: 1, Eve: 2.

Stars and Bars: *x | x| % *.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: | x| xx % *.

Each split = a sequence of stars and bars.
Each sequence of stars and bars = a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|

Inclusion/Exclusion Rule: For any Sand T,
|ISUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°

T = phone numbers with 7 as second digit. |T| = 10°.

SN T = phone numbers with 7 as first and second digit. |[SN T| = 108.
Answer: |S|+|T|—|SNT|=10%+10° —108.
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Summary.

First rule: ny x no--- x n3.

k Samples with replacement from nitems: n*.
Sample without replacement: = k),

Second rule: when order doesn’t matter divide..when possible.

Sample without replacement and order doesn’t matter: (i) = %y-
“n choose k”

One-to-one rule: equal in number if one-to-one correspondence.
Sample with replacement and order doesn’t matter: (7).

Sum Rule: For disjoint sets Sand T, |SUT| = |S|+|T|
Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.



