Counting and Probability

What's to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue? Count blue. Count total. Divide.

Today: Counting!

Later this week: Probability. Professor Walrand.

Outline

- 1. Counting.
- 2. Tree
- 3. Rules of Counting
- Sample with/without replacement where order does/doesn't matter.

Count?

How many outcomes possible for k coin tosses? How many handshakes for n people? How many 10 digit numbers? How many 10 digit numbers without repeating digits?

Using a tree of possibilities...

How many 3-bit strings?

How many different sequences of three bits from $\{0,1\}$?

How would you make one sequence?

How many different ways to do that making?

8 leaves which is $2 \times 2 \times 2$. One leaf for each string.

8 3-bit srings!

First Rule of Counting: Product Rule

Objects made by choosing from n_1 , then n_2 , ..., then n_k the number of objects is $n_1 \times n_2 \cdots \times n_k$.

In picture, $2 \times 2 \times 3 = 12$

Using the first rule..

How many outcomes possible for *k* coin tosses?

2 ways for first choice, 2 ways for second choice, \dots

$$2 \times 2 \cdots \times 2 = 2^k$$

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...

$$10\times10\cdots\times10=10^k$$

How many *n* digit base *m* numbers?

m ways for first, m ways for second, ... m^n

Functions, polynomials.

```
How many functions f mapping S to T?

|T| ways to choose for f(s_1), |T| ways to choose for f(s_2), ...

....|T|^{|S|}

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ...

p^{d+1}

p values for first point, p values for second, ...

p^{d+1}
```

Permutations.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, \dots

...
$$10*9*8\cdots*1=10!$$
.¹

How many different samples of size k from n numbers **without** replacement.

n ways for first choice, n-1 ways for second, n-2 choices for third, ...

...
$$n*(n-1)*(n-2)*(n-k+1) = \frac{n!}{(n-k)!}$$
.

How many orderings of *n* objects are there? **Permutations of** *n* **objects.**

n ways for first, n-1 ways for second, n-2 ways for third, ...

...
$$n*(n-1)*(n-2)\cdot *1 = n!$$
.

¹By definition: 0! = 1. n! = n(n-1)(n-2)...1.

One-to-One Functions.

How many one-to-one functions from *S* to *S*.

|S| choices for $f(s_1)$, |S|-1 choices for $f(s_2)$, ...

So total number is $|S| \times |S| - 1 \cdots 1 = |S|!$

A one-to-one function is a permutation!

Counting sets..when order doesn't matter.

How many poker hands?

$$52 \times 51 \times 50 \times 49 \times 48$$
 ???

Are A, K, Q, 10, J of spades and 10, J, Q, K, A of spades the same?

Second Rule of Counting: If order doesn't matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: 5!.

Can write as...
$$\frac{52 \times 51 \times 50 \times 49 \times 48}{5!}$$

$$\frac{52!}{5! \times 47!}$$

Generic: ways to choose 5 out of 52 possibilities.

²When each unordered object corresponds equal numbers of ordered objects.

When order doesn't matter.

Choose 2 out of *n*?

$$\frac{n\times(n-1)}{2}=\frac{n!}{(n-2)!\times 2}$$

Choose 3 out of n?

$$\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}$$

Choose k out of n?

$$\frac{n!}{(n-k)! \times k!}$$

Notation: $\binom{n}{k}$ and pronounced "n choose k."

Simple Practice.

How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways to choose second, 1 for last.

$$\implies$$
 3 × 2 × 1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A!

total orderings of 7 letters. 7!

total "extra counts" or orderings of two A's? 3!

Total orderings? 7!

How many orderings of MISSISSIPPI?

4 S's, 4 I's, 2 P's.

11 letters total!

11! ordered objects!

 $4! \times 4! \times 2!$ ordered objects per "unordered object"

$$\implies \frac{11!}{4!4!2!}.$$

Sampling...

Sample k items out of n

Without replacement:

Order matters:
$$n \times n - 1 \times n - 2 \dots \times n - k + 1 = \frac{n!}{(n-k)!}$$

Order does not matter:

Second Rule: divide by number of orders – "k!"

$$\implies \frac{n!}{(n-k)!k!}$$
.

"n choose k"

With Replacement.

Order matters: $n \times n \times ... n = n^k$

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Set: 1,2,3 3! orderings map to it. Set: 1,2,2 $\frac{3!}{2!}$ orderings map to it.

How do we deal with this situation?!?!

Stars and bars....

How many ways can Bob and Alice split 5 dollars? For each of 5 dollars pick Bob or Alice(2⁵), divide out order ???

5 dollars for Bob and 0 for Alice: one ordered set: (*B*, *B*, *B*, *B*, *B*).

4 for Bob and 1 for Alice:

5 ordered sets: (A,B,B,B,B); (B,A,B,B,B); ...

Well, we can list the possibilities.

0+5, 1+4,2+3, 3+2, 4+1, 5+0.

For 2 numbers adding to k, we get k + 1.

For 3 numbers adding to *k*?

Stars and Bars.

How many ways to add up *n* numbers to equal *k*?

Or: *k* choices from set of *n* possibilities with replacement. **Sample with replacement where order just doesn't matter.**

How many ways can Alice, Bob, and Eve split 5 dollars.

Think of Five dollars as Five stars: ****.

Alice: 2, Bob: 1, Eve: 2. Stars and Bars: $\star\star|\star|\star\star$.

Alice: 0, Bob: 1, Eve: 4. Stars and Bars: $|\star|\star\star\star\star$.

Each split \implies a sequence of stars and bars. Each sequence of stars and bars \implies a split.

Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

Stars and Bars.

How many different 5 star and 2 bar diagrams?

7 positions in which to place the 2 bars.

 $\binom{7}{2}$ ways to do so and $\binom{7}{2}$ ways to split 5\$ among 3 people.

Ways to add up n numbers to sum to k? or

" k from n with replacement where order doesn't matter." In general, k stars n-1 bars.

n+k-1 positions from which to choose n-1 bar positions.

$$\binom{n+k-1}{n-1}$$

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Inclusion/Exclusion Rule: For any $\mathcal S$ and $\mathcal T$,

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Example: How many 10-digit phone numbers have 7 as their first or second digit?

 $S = \text{phone numbers with 7 as first digit.} |S| = 10^9$

T = phone numbers with 7 as second digit. $|T| = 10^9$.

 $S \cap T$ = phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Answer: $|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8$.

Summary.

First rule: $n_1 \times n_2 \cdots \times n_3$.

k Samples with replacement from n items: n^k .

Sample without replacement: $\frac{n!}{(n-k)!}$

Second rule: when order doesn't matter divide..when possible.

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "n choose k"

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn't matter: $\binom{k+n-1}{n}$.

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$ **Inclusion/Exclusion Rule:** For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.