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Russell’'s Paradox.

Naive Set Theory: Any definable collection is a set.

Jy Vx (xey < P(x))

y is the set of elements that satisfies the proposition P(x).

P(x)=x¢ x.
There exists a y that satisfies statement 1 for P(-).

Take x =y.

yey =yd¢y.

Oops!
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HALT (P, )
P - program
I - input.
Determines if P(/) (P run on /) halts or loops forever.
Run P on / and check!
How long do you wait?
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Halt does not exist.

HALT (P, 1)
P - program
I - input.

Determines if P(/) (P run on /) halts or loops forever.
Theorem: There is no program HALT.
Proof Idea: Proof by contradiction, use self-reference.
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Turing machine.

A Turing machine.

— an (infinite) tape with characters

— be in a state, and read a character

— move left, right, and/or write a character.

Universal Turing machine
— an interpreter program for a Turing machine
— where the tape could be a description of a ... Turing machine!

Now that’s a computer!
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Church proved an equivalent theorem. (Previously.)

Used A calculus....which is... a programming language!!!
Just like Python, C, Javascript, ....

Godel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to an
....natural number!!!!
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More on this topic in CS 172.
Computation is a lens for other action in the world.



