
Barber paradox.

Created by logician Bertrand Russell.

Village with just 1 barber, all men clean-shaven.
Barber announces:
“I shave all and only those men who do not shave themselves.”

Who shaves the barber?

Case 1: It’s the barber.
Case 2: Somebody else.

Cannot answer that question in either case! Paradox!!!

Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

∃y ∀x (x ∈ y ⇐⇒ P(x)) (1)

y is the set of elements that satisfies the proposition P(x).

P(x) = x 6∈ x .

There exists a y that satisfies statement 1 for P(·).
Take x = y .

y ∈ y ⇐⇒ y 6∈ y .

Oops!

Is this stuff actually useful?

Verify that my program is correct!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.

Implementing HALT.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Run P on I and check!

How long do you wait?

Halt does not exist.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof Idea: Proof by contradiction, use self-reference.

Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALT(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever
=⇒ then HALT(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Contradiction. Program HALT does not exist!



Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

P1 P2 P3 · · ·

P1 H H L · · ·
P2 L L H · · ·
P3 L H H · · ·
...

...
...

...
. . .

Halt(P,P) - diagonal.
Turing - is not Halt.
and is different from every Pi on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!

Turing machine.

A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ... Turing machine!

Now that’s a computer!

Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... a programming language!!!
Just like Python, C, Javascript, ....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to an

....natural number!!!!

Summary: computability.

Computer Programs are interesting objects.
Mathematical objects.
Formal Systems.

Computer Programs cannot completely “understand” computer
programs.

Example: no computer program can tell if any other computer
program HALTS.

Proof Idea: Diagonalization.
Program: Turing (or DIAGONAL) takes P.
Assume there is HALT.
DIAGONAL flips answer.

Loops if P halts, halts if P loops.
What does Turing do on turing? Doesn’t loop or HALT.

HALT does not exist!

More on this topic in CS 172.

Computation is a lens for other action in the world.


