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Erasure Codes: Reconstructing a message if some parts of it
(packets) are lost.

Idea: Encode n-packet message as a polynomial with n coefficients
Send values at n+ k points if < k will be lost
Reconstruct from what you receive.
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Today'’s topic.

Error Correction:
Noisy Channel: corrupts k packets. (rather than loss/erasures.)
Additional Challenge: Finding which packets are corrupt.
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Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2+x+1 (mod 7) has
P(1) =3,P(2) =0,P(3) = 6 modulo 7.

Send: P(1)=3,P(2)=0,P(3)=6,P(4)=0,P(5) =3.
Receive R(1) =3,R(2)=1,R(3)=6,R(4) =0,R(5) =3.
P(i) = R(i) for n+ k =3+ 1 = 4 points.



Slow solution.

Brute Force:
For each subset of n+ k points



Slow solution.

Brute Force:
For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!

» For any subset of n+ k pts,



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!
» For any subset of n+ k pts,

1. there is unique degree n— 1 polynomial Q(x) that fits n of
them



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!
» For any subset of n+ k pts,

1. there is unique degree n— 1 polynomial Q(x) that fits n of
them
2. and where Q(x) is consistent with n+ k points



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!

» For any subset of n+ k pts,

1. there is unique degree n— 1 polynomial Q(x) that fits n of
them
2. and where Q(x) is consistent with n+ k points
= P(x) = Q(x).



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!
» For any subset of n+ k pts,

1. there is unique degree n— 1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n+ k points
= P(x) = Q(x).

Reconstructs P(x) and only P(x)!!
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E(1)(pn-1+---p0) = R(1)E(1) (mod p)

E(i)(pn-1i""+---po) = R()E(i) (mod p)

E(m)(po1m" ' +---po) = R(m)E(m) (mod p)
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P(x)=x2+x+1



Example: Compute P(x).
Q(x) = x3 +6x2+6x+5.
=x-2.

P(x) = X2+ x+1
Message is P(1) =3,P(2)=0,P(3) =6.
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Points to polynomials, have to deal with zeros!
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