Quick recap of last time.

Erasure Codes: Reconstructing a message if some parts of it (packets) are lost.

Quick recap of last time.

Erasure Codes: Reconstructing a message if some parts of it (packets) are lost.

Idea: Encode *n*-packet message as a polynomial with *n* coefficients

Quick recap of last time.

Erasure Codes: Reconstructing a message if some parts of it (packets) are lost.

Idea: Encode n-packet message as a polynomial with n coefficients Send values at n+k points if $\leq k$ will be lost Reconstruct from what you receive.

Today's topic.

Error Correction:

Today's topic.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss/erasures.)

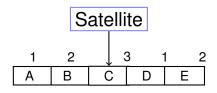
Today's topic.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss/erasures.)

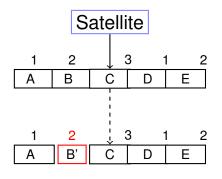
Additional Challenge: Finding which packets are corrupt.

Satellite

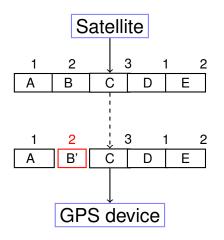

Satellite

3 packet message.

Satellite


3 packet message.

Corrupts 1 packets.


3 packet message. Send 5.

Corrupts 1 packets.

3 packet message. Send 5.

Corrupts 1 packets.

3 packet message. Send 5.

Corrupts 1 packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ▶ $P(1) = m_1, ..., P(n) = m_n$.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Receive values R(1), ..., R(n+2k).

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Receive values $R(1), \dots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Receive values $R(1), \dots, R(n+2k)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ► $P(1) = m_1, ..., P(n) = m_n$.
 - Recall: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Receive values $R(1), \ldots, R(n+2k)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

P(x): degree n-1 polynomial.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial

P(x): degree n-1 polynomial. Send $P(1), \ldots, P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

```
P(x): degree n-1 polynomial.
Send P(1), \ldots, P(n+2k)
Receive R(1), \ldots, R(n+2k)
At most k i's where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

(1) Easy.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

(1) Easy. Only *k* corruptions (by assumption).

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.

Q(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial.

Send $P(1), \ldots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons. Total points to choose from : n+2k. *H* Holes.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

Receive $R(1), \ldots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$.

```
P(x): degree n-1 polynomial.
Send P(1), \dots, P(n+2k)
Receive R(1), \dots, R(n+2k)
At most k is where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

$$\implies$$
 $Q(i) = P(i)$ at n points.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$

At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
- P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. P Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 $\Longrightarrow Q(i) = P(i)$ at *n* points.

$$\implies Q(x) = P(x).$$

```
P(x): degree n-1 polynomial.
Send P(1),\ldots,P(n+2k)
Receive R(1),\ldots,R(n+2k)
At most k i's where P(i) \neq R(i).
```

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Easy. Only *k* corruptions (by assumption).
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.
 - Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. H Holes.

Points contained by both $: \ge n$. $\ge P - H$ Collisions.

 \implies Q(i) = P(i) at n points.

$$\implies Q(x) = P(x).$$

Message: 3, 0, 6.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6,

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \pmod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has P(1) = 3, P(2) = 0, P(3) = 6 modulo 7.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Brute Force:

For each subset of n+k points

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them.

Brute Force:

Brute Force:

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- ► For any subset of n+k pts,

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points $\implies P(x) = Q(x)$.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$\begin{array}{rcl} p_2 + p_1 + p_0 & \equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 & \equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 & \equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 & \equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 & \equiv & 3 \pmod{7} \end{array}$$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$\begin{array}{ccccc} p_2 + p_1 + p_0 & \equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 & \equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 & \equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 & \equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 & \equiv & 3 \pmod{7} \end{array}$$

Assume point 1 is wrong

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$\begin{array}{cccc} p_2 + p_1 + p_0 & \equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 & \equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 & \equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 & \equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 & \equiv & 3 \pmod{7} \end{array}$$

Assume point 1 is wrong and solve..

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$\begin{array}{cccc} p_2 + p_1 + p_0 & \equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 & \equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 & \equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 & \equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 & \equiv & 3 \pmod{7} \end{array}$$

Assume point 1 is wrong and solve..no consistent solution!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $1p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $1p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong and solve...

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

 $4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$
 $2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$
 $2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$
 $1p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...no consistent solution! Assume point 2 is wrong and solve...consistent solution!

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$P(x)=p_{n-1}x^{n-1}+\cdots p_0$$
 and receive $R(1),\ldots R(m=n+2k)$.
$$p_{n-1}+\cdots p_0 \equiv R(1) \pmod p$$

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$
$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
 $p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$
 $p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$
 \vdots
 $p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$
 \vdots
 $p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\vdots$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\vdots$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!!

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$\begin{aligned} p_{n-1} + \cdots p_0 &\equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 &\equiv & R(2) \pmod{p} \\ & & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 &\equiv & R(i) \pmod{p} \\ & & & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 &\equiv & R(m) \pmod{p} \end{aligned}$$

Error!! Where???

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$\begin{array}{cccc} p_{n-1} + \cdots p_0 & \equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 & \equiv & R(2) \pmod{p} \\ & & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 & \equiv & R(i) \pmod{p} \\ & & & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 & \equiv & R(m) \pmod{p} \end{array}$$

Error!! Where??? Could be anywhere!!!

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
 $\begin{array}{cccc} p_{n-1} + \cdots p_0 & \equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 & \equiv & R(2) \pmod{p} \\ & & & & & \\ & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 & \equiv & R(i) \pmod{p} \\ & & & & & \\ & & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 & \equiv & R(m) \pmod{p} \end{array}$

Error!! Where???
Could be anywhere!!! ...so try everywhere.

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$\begin{aligned} p_{n-1} + \cdots p_0 &\equiv & R(1) \pmod{p} \\ p_{n-1}2^{n-1} + \cdots p_0 &\equiv & R(2) \pmod{p} \\ & & & & & & & \\ p_{n-1}i^{n-1} + \cdots p_0 &\equiv & R(i) \pmod{p} \\ & & & & & & & \\ p_{n-1}(m)^{n-1} + \cdots p_0 &\equiv & R(m) \pmod{p} \end{aligned}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
 $p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$
 $p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$
 \vdots
 $p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$
 \vdots
 $p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$

Error!! Where???

Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$...Exponential in k!.

$$P(x) = p_{n-1}x^{n-1} + \cdots p_0$$
 and receive $R(1), \dots R(m = n + 2k)$.
$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\cdot \qquad p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\cdot \qquad p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where???

Could be anywhere!!! ...so try everywhere.

Runtime: $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in k!.

How do we find where the bad packets are efficiently?!?!?!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

$$\begin{array}{rcl} (p_{n-1}+\cdots p_0) & \equiv & R(1) & (\bmod \ p) \\ (p_{n-1}2^{n-1}+\cdots p_0) & \equiv & R(2) & (\bmod \ p) \\ & & \vdots & \\ (p_{n-1}(m)^{n-1}+\cdots p_0) & \equiv & R(n+2k) & (\bmod \ p) \end{array}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$0 \times (p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know...

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)...$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)...(x - e_k).$

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$(p_{n-1} 2^{n-1} + \cdots p_0) \equiv R(2) \pmod{p}$$

$$\vdots$$

$$(p_{n-1} (m)^{n-1} + \cdots p_0) \equiv R(n+2k) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

We will use a polynomial!!! One that we don't know... But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

All equations satisfied!!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2x^2 + p_1x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$(p_2 + p_1 + p_0) \equiv (3)$$
 (mod 7)
 $(4p_2 + 2p_1 + p_0) \equiv (1)$ (mod 7)
 $(2p_2 + 3p_1 + p_0) \equiv (6)$ (mod 7)
 $(2p_2 + 4p_1 + p_0) \equiv (0)$ (mod 7)
 $(4p_2 + 5p_1 + p_0) \equiv (3)$ (mod 7)

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$(p_2 + p_1 + p_0) \equiv (3)$$
 (mod 7)
 $(4p_2 + 2p_1 + p_0) \equiv (1)$ (mod 7)
 $(2p_2 + 3p_1 + p_0) \equiv (6)$ (mod 7)
 $(2p_2 + 4p_1 + p_0) \equiv (0)$ (mod 7)
 $(4p_2 + 5p_1 + p_0) \equiv (3)$ (mod 7)

Error locator polynomial: (x-2).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{rcl} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2). Multiply equation i by (i-2).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...
$$(1-2)(p_2 + p_1 + p_0) \equiv (3)(1-2) \pmod{7}$$

$$\begin{array}{rcl} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial!

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form:

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-2)(p_2+p_1+p_0) & \equiv & (3)(1-2) \pmod{7} \\ (2-2)(4p_2+2p_1+p_0) & \equiv & (1)(2-2) \pmod{7} \\ (3-2)(2p_2+3p_1+p_0) & \equiv & (6)(3-2) \pmod{7} \\ (4-2)(2p_2+4p_1+p_0) & \equiv & (0)(4-2) \pmod{7} \\ (5-2)(4p_2+5p_1+p_0) & \equiv & (3)(5-2) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns $(p_0, p_1, p_2 \text{ and } e)$,

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
Plugin points...

$$\begin{array}{lll} (1-e)(p_2+p_1+p_0) & \equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) & \equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) & \equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) & \equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) & \equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation i by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns (p_0, p_1, p_2 and e), 5 nonlinear equations.

The General Case.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m) \pmod{p}$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

 $m = n + 2k$ satisfied equations,

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + ... + p_0$$

 $m = n + 2k$ satisfied equations, $n + k$ unknowns.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + ... + p_0$$

 $m = n + 2k$ satisfied equations, $n + k$ unknowns. But nonlinear!

$$E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

 $m = n + 2k$ satisfied equations, $n + k$ unknowns. But nonlinear!
Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \dots + a_0$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

 $m = n + 2k$ satisfied equations, $n + k$ unknowns. But nonlinear!
Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \dots + a_0$.

Rewrite the ith equation, for all i, as:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

$$m = n + 2k \text{ satisfied equations, } n + k \text{ unknowns. But nonlinear!}$$
Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \dots + a_0$.

Rewrite the *i*th equation, for all *i*, as:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \dots + p_0$$

$$m = n + 2k \text{ satisfied equations, } n + k \text{ unknowns. But nonlinear!}$$

$$\text{Let } Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \dots + a_0.$$

Rewrite the *i*th equation, for all *i*, as:

$$Q(i) = R(i)E(i).$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}m^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

$$P(x) = p_{n-1}x^{n-1} + p_{n-2}x^{n-2} + \ldots + p_0$$

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let
$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$$
.

Rewrite the *i*th equation, for all *i*, as:

$$Q(i) = R(i)E(i)$$
.

Note: this is linear in a_i and coefficients of E(x)!

► E(x) has degree k

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

 $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$
 \vdots

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

 $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$
 \vdots
 $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

$$a_{n+k-1}(m) + \dots a_0 = A(m)((m) + D_{k-1}(m) + \dots D_0)$$
 (mod p

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

..and
$$n+2k$$
 unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$ Q(i) = R(i)E(i).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$ Q(i) = R(i)E(i).

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$ Q(i) = R(i)E(i).

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.
 $E(x) = x - 2$.

Example: Compute P(x).

 $Q(x) = x^3 + 6x^2 + 6x + 5.$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2 \quad x^{3} + 6 \quad x^{2} + 6 \quad x + 5$$

$$x^{3} - 2 \quad x^{2}$$

```
Q(x) = x^3 + 6x^2 + 6x + 5.
E(x) = x - 2.
                     1 x^2 + 1 x + 1
    x - 2 ) x^3 + 6 x^2 + 6 x + 5
             x^3 - 2 x^2
                     1 x^2 + 6 x + 5
                     1 x^2 - 2 x
                                x + 5
                                x - 2
```

```
Q(x) = x^3 + 6x^2 + 6x + 5.
E(x) = x - 2.
                     1 x^2 + 1 x + 1
    x - 2 ) x^3 + 6 x^2 + 6 x + 5
             x^3 - 2 x^2
                     1 x^2 + 6 x + 5
                     1 x^2 - 2 x
                                x + 5
                                x - 2
```

$$P(x) = x^2 + x + 1$$

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

Message: m_1, \ldots, m_n .

Message: m_1, \ldots, m_n .

Sender:

1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

Receiver:

1. Receive R(1), ..., R(n+2k).

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute P(1), ..., P(n),

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute $P(1), \ldots, P(n)$, recover the message.

Is there one and only one P(x) from Berlekamp-Welch procedure?

A key question.

Is there one and only one P(x) from Berlekamp-Welch procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

$$Q'(x)E(x)$$
 and $Q(x)E'(x)$ are degree $n+2k-1$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

$$Q'(x)E(x)$$
 and $Q(x)E'(x)$ are degree $n+2k-1$ and agree on $n+2k$ points $\implies Q'(x)E(x)=Q(x)E'(x)$.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points $\implies Q'(x)E(x)=Q(x)E'(x)$. Cross divide.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x)$$
 on $n+2k$ values of x . (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points $\implies Q'(x)E(x)=Q(x)E'(x)$.

Cross divide.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof:

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$
$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Claim: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Berlekamp-Welch algorithm decodes correctly when at most *k* errors!

Communicate *n* packets, with *k* erasures.

Communicate *n* packets, with *k* erasures.

How many packets?

Communicate *n* packets, with *k* erasures.

How many packets? n+k

Communicate *n* packets, with *k* erasures.

How many packets? n+k How to encode?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree? n-1.

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(x), and P(x)!

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2kHow to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(x), and P(x)!

Reconstruct error polynomial, E(x), and P(x). Nonlinear equations.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division!

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Berlekamp-Welch Decoding.

Communicate *n* packets, with *k* erasures.

How many packets? n+k

How to encode? With polynomial, P(x).

Of degree? n-1

Recover? Reconstruct P(x) with any n points!

Communicate *n* packets, with *k* errors.

How many packets? n+2k

How to encode? With polynomial, P(x). Of degree? n-1.

Recover?

Reconstruct error polynomial, E(x), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Berlekamp-Welch Decoding. Perfection!