Quick recap of last time.

Erasure Codes: Reconstructing a message if some parts of it (packets) are lost.
Idea: Encode n-packet message as a polynomial with n coefficients Send values at $n+k$ points if $\leq k$ will be lost Reconstruct from what you receive.

Today's topic.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss/erasures.)
Additional Challenge: Finding which packets are corrupt.

Error Correction

3 packet message. Send 5 .

Corrupts 1 packets.

The Scheme.

Problem: Communicate n packets m_{1}, \ldots, m_{n} on noisy channel that corrupts $\leq k$ packets.
Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n-1$, that encodes message.

- $P(1)=m_{1}, \ldots, P(n)=m_{n}$.
- Recall: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2 k)$.

After noisy channel: Receive values $R(1), \ldots, R(n+2 k)$.

Properties:

(1) $P(i)=R(i)$ for at least $n+k$ points i,
(2) $P(x)$ is unique degree $n-1$ polynomial that contains $\geq n+k$ received points.

Properties: proof.

$P(x)$: degree $n-1$ polynomial.
Send $P(1), \ldots, P(n+2 k)$
Receive $R(1), \ldots, R(n+2 k)$
At most k i's where $P(i) \neq R(i)$.

Properties:

(1) $P(i)=R(i)$ for at least $n+k$ points i,
(2) $P(x)$ is unique degree $n-1$ polynomial that contains $\geq n+k$ received points.

Proof:

(1) Easy. Only k corruptions (by assumption).
(2) Degree $n-1$ polynomial $Q(x)$ consistent with $n+k$ points.
$Q(x)$ agrees with $R(i), n+k$ times.
$P(x)$ agrees with $R(i), n+k$ times.
Total points contained by both: $2 n+2 k . \quad P$
Total points to choose from : $n+2 k$. H
Points contained by both $\quad: \geq n . \geq P-H \quad$ Collisions.
$\Longrightarrow Q(i)=P(i)$ at n points.
$\Longrightarrow Q(x)=P(x)$.

Example.

Message: 3,0,6.
Reed Solomon Code: $P(x)=x^{2}+x+1(\bmod 7)$ has
$P(1)=3, P(2)=0, P(3)=6$ modulo 7 .
Send: $P(1)=3, P(2)=0, P(3)=6, P(4)=0, P(5)=3$.
Receive $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$.
$P(i)=R(i)$ for $n+k=3+1=4$ points.

Slow solution.

Brute Force:

For each subset of $n+k$ points
Fit degree $n-1$ polynomial, $Q(x)$, to n of them.
Check if consistent with $n+k$ of the total points. If yes, output $Q(x)$.

- For subset of $n+k$ pts where $R(i)=P(i)$, method will reconstruct $P(x)$!
- For any subset of $n+k$ pts,

1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of them
2. and where $Q(x)$ is consistent with $n+k$ points

$$
\Longrightarrow P(x)=Q(x)
$$

Reconstructs $P(x)$ and only $P(x)$!!

Example.

Received $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$
Find $P(x)=p_{2} x^{2}+p_{1} x+p_{0}$ that contains $n+k=3+1$ points. All equations..

$$
\begin{aligned}
p_{2}+p_{1}+p_{0} & \equiv 3(\bmod 7) \\
4 p_{2}+2 p_{1}+p_{0} & \equiv 1(\bmod 7) \\
2 p_{2}+3 p_{1}+p_{0} & \equiv 6(\bmod 7) \\
2 p_{2}+4 p_{1}+p_{0} & \equiv 0(\bmod 7) \\
1 p_{2}+5 p_{1}+p_{0} & \equiv 3(\bmod 7)
\end{aligned}
$$

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

In general..

$P(x)=p_{n-1} x^{n-1}+\cdots p_{0}$ and receive $R(1), \ldots R(m=n+2 k)$.

$$
\begin{aligned}
p_{n-1}+\cdots p_{0} & \equiv R(1)(\bmod p) \\
p_{n-1} 2^{n-1}+\cdots p_{0} & \equiv R(2)(\bmod p) \\
& \cdot \\
p_{n-1} i^{n-1}+\cdots p_{0} & \equiv R(i)(\bmod p) \\
& \cdot \\
p_{n-1}(m)^{n-1}+\cdots p_{0} & \equiv R(m)(\bmod p)
\end{aligned}
$$

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime: $\binom{n+2 k}{k}$ possibilitities.
Something like $(n / k)^{k}$...Exponential in k !.
How do we find where the bad packets are efficiently?!?!?!

Where can the bad packets be?

$$
\begin{aligned}
E(1)\left(p_{n-1}+\cdots p_{0}\right) & \equiv R(1) E(1)(\bmod p) \\
0 \times E(2)\left(p_{n-1} 2^{n-1}+\cdots p_{0}\right) & \equiv R(2) E(2)(\bmod p) \\
& \vdots \\
E(m)\left(p_{n-1}(m)^{n-1}+\cdots p_{0}\right) & \equiv R(n+2 k) E(m)(\bmod p)
\end{aligned}
$$

Idea: Multiply equation i by 0 if and only if $P(i) \neq R(i)$.
All equations satisfied!!!!!
But which equations should we multiply by 0 ?
We will use a polynomial!!! One that we don't know... But can find!
Errors at points e_{1}, \ldots, e_{k}. (In diagram above, $e_{1}=2$.)
Error locator polynomial: $E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right)$.
$E(i)=0$ if and only if $e_{j}=i$ for some j
Multiply equations by $E(\cdot)$. (Above $E(x)=(x-2)$.)
All equations satisfied!!

Example.

Received $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$
Find $P(x)=p_{2} x^{2}+p_{1} x+p_{0}$ that contains $n+k=3+1$ points.
Plugin points...

$$
\begin{aligned}
& (1=\boldsymbol{a})\left(p_{2}+p_{1}+p_{0}\right) \xlongequal[\underline{\underline{\underline{\underline{2}}}}]{ }(3)(1=\boldsymbol{a})(\bmod 7) \\
& (2=\boldsymbol{\alpha})\left(4 p_{2}+2 p_{1}+p_{0}\right) \underline{\underline{\underline{\underline{\underline{\underline{2}}}}}}(1)(\mathbf{2}=\boldsymbol{\boldsymbol { a }})(\bmod 7) \\
& (3=\boldsymbol{\sigma})\left(2 p_{2}+3 p_{1}+p_{0}\right) \xlongequal[\underline{\underline{\underline{\underline{2}}}}]{ }(6)(3=\boldsymbol{c})(\bmod 7) \\
& (4-\boldsymbol{z})\left(2 p_{2}+4 p_{1}+p_{0}\right) \xlongequal[\underline{\underline{\underline{\underline{2}}}}]{ }(0)(4-\boldsymbol{2})(\bmod 7) \\
& (5=2)\left(4 p_{2}+5 p_{1}+p_{0}\right)=(3)(5=\boldsymbol{z})(\bmod 7)
\end{aligned}
$$

Error locator polynomial: $(x-2)$.
Multiply equation i by $(i-2)$. All equations satisfied!
But don't know error locator polynomial! Do know form: $(x-e)$.
4 unknowns (p_{0}, p_{1}, p_{2} and e), 5 nonlinear equations.

The General Case.

$$
\begin{aligned}
E(1)\left(p_{n-1}+\cdots p_{0}\right) & \equiv R(1) E(1)(\bmod p) \\
& \vdots \\
E(i)\left(p_{n-1} i^{i-1}+\cdots p_{0}\right) & \equiv R(i) E(i)(\bmod p) \\
& \vdots \\
E(m)\left(p_{n-1} m^{n-1}+\cdots p_{0}\right) & \equiv R(m) E(m)(\bmod p)
\end{aligned}
$$

$P(x)=p_{n-1} x^{n-1}+p_{n-2} x^{n-2}+\ldots+p_{0}$
$m=n+2 k$ satisfied equations, $n+k$ unknowns. But nonlinear!
Let $Q(x)=E(x) P(x)=a_{n+k-1} x^{n+k-1}+\cdots a_{0}$.
Rewrite the i th equation, for all i, as:

$$
Q(i)=R(i) E(i) .
$$

Note: this is linear in a_{i} and coefficients of $E(x)$!

Finding $Q(x)$ and $E(x)$?

- $E(x)$ has degree k...

$$
E(x)=x^{k}+b_{k-1} x^{k-1} \cdots b_{0}
$$

- $Q(x)=P(x) E(x)$ has degree $n+k-1 \ldots$

$$
Q(x)=a_{n+k-1} x^{n+k-1}+a_{n+k-2} x^{n+k-2}+\cdots a_{0}
$$

Solving for $Q(x)$ and $E(x) \ldots$ and $P(x)$

For all points $1, \ldots, i, n+2 k$,

$$
Q(i)=R(i) E(i) \quad(\bmod p)
$$

Gives $n+2 k$ linear equations.

$$
\begin{aligned}
a_{n+k-1}+\ldots a_{0} & \equiv R(1)\left(1+b_{k-1} \cdots b_{0}\right)(\bmod p) \\
a_{n+k-1}(2)^{n+k-1}+\ldots a_{0} & \equiv R(2)\left((2)^{k}+b_{k-1}(2)^{k-1} \cdots b_{0}\right)(\bmod p) \\
& \vdots \\
a_{n+k-1}(m)^{n+k-1}+\ldots a_{0} & \equiv R(m)\left((m)^{k}+b_{k-1}(m)^{k-1} \cdots b_{0}\right)(\bmod p)
\end{aligned}
$$

.. and $n+2 k$ unknown coefficients of $Q(x)$ and $E(x)$!
Solve for coefficients of $Q(x)$ and $E(x)$.
Once we have those, compute $P(x)$ as $Q(x) / E(x)$.

Example.

Received $R(1)=3, R(2)=1, R(3)=6, R(4)=0, R(5)=3$

$$
\begin{aligned}
& Q(x)=E(x) P(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
& E(x)=x-b_{0} \\
& Q(i)=R(i) E(i) .
\end{aligned}
$$

$$
\begin{aligned}
a_{3}+a_{2}+a_{1}+a_{0} & \equiv 3\left(1-b_{0}\right)(\bmod 7) \\
a_{3}+4 a_{2}+2 a_{1}+a_{0} & \equiv 1\left(2-b_{0}\right)(\bmod 7) \\
6 a_{3}+2 a_{2}+3 a_{1}+a_{0} & \equiv 6\left(3-b_{0}\right)(\bmod 7) \\
a_{3}+2 a_{2}+4 a_{1}+a_{0} & \equiv 0\left(4-b_{0}\right)(\bmod 7) \\
6 a_{3}+4 a_{2}+5 a_{1}+a_{0} & \equiv 3\left(5-b_{0}\right)(\bmod 7)
\end{aligned}
$$

$a_{3}=1, a_{2}=6, a_{1}=6, a_{0}=5$ and $b_{0}=2$.
$Q(x)=x^{3}+6 x^{2}+6 x+5$.
$E(x)=x-2$.

Example: Compute $P(x)$.

$$
\begin{aligned}
& Q(x)=x^{3}+6 x^{2}+6 x+5 \text {. } \\
& E(x)=x-2 \text {. } \\
& 1 \mathrm{x}^{\wedge} 2+1 \mathrm{x}+1 \\
& x-2) x^{\wedge} 3+6 x^{\wedge} 2+6 x+5 \\
& x^{\wedge} 3-2 x^{\wedge} 2 \\
& 1 x^{\wedge} 2+6 x+5 \\
& 1 \mathrm{x}^{\wedge} 2-2 \mathrm{x} \\
& x+5 \\
& \text { x - } 2
\end{aligned}
$$

$P(x)=x^{2}+x+1$
Message is $P(1)=3, P(2)=0, P(3)=6$.

Error Correction: Berlekamp-Welch

Message: m_{1}, \ldots, m_{n}.

Sender:

1. Form degree $n-1$ polynomial $P(x)$ where $P(i)=m_{i}$.
2. Send $P(1), \ldots, P(n+2 k)$.

Receiver:

1. Receive $R(1), \ldots, R(n+2 k)$.
2. Solve $n+2 k$ equations, $Q(i)=E(i) R(i)$ to find $Q(x)=E(x) P(x)$ and $E(x)$.
3. Compute $P(x)=Q(x) / E(x)$.
4. Compute $P(1), \ldots, P(n)$, recover the message.

A key question.

Is there one and only one $P(x)$ from Berlekamp-Welch procedure?
Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.

Unique solution for $P(x)$?

Uniqueness: any solution $Q^{\prime}(x)$ and $E^{\prime}(x)$ have

Proof:

$$
\begin{equation*}
\frac{Q^{\prime}(x)}{E^{\prime}(x)}=\frac{Q(x)}{E(x)}=P(x) \tag{1}
\end{equation*}
$$

We claim

$$
\begin{equation*}
Q^{\prime}(x) E(x)=Q(x) E^{\prime}(x) \text { on } n+2 k \text { values of } x \tag{2}
\end{equation*}
$$

Equation 2 implies 1:
$Q^{\prime}(x) E(x)$ and $Q(x) E^{\prime}(x)$ are degree $n+2 k-1$
and agree on $n+2 k$ points

$$
\Longrightarrow Q^{\prime}(x) E(x)=Q(x) E^{\prime}(x)
$$

Cross divide.

Revisiting last bit.

Claim: $Q^{\prime}(x) E(x)=Q(x) E^{\prime}(x)$ on $n+2 k$ values of x.
Proof: Construction implies that

$$
\begin{aligned}
Q(i) & =R(i) E(i) \\
Q^{\prime}(i) & =R(i) E^{\prime}(i)
\end{aligned}
$$

for $i \in\{1, \ldots n+2 k\}$.
If $E(i)=0$, then $Q(i)=0$. If $E^{\prime}(i)=0$, then $Q^{\prime}(i)=0$.
$\Longrightarrow Q(i) E^{\prime}(i)=Q^{\prime}(i) E(i)$ holds when $E(i)$ or $E^{\prime}(i)$ are zero.
When $E^{\prime}(i)$ and $E(i)$ are not zero

$$
\frac{Q^{\prime}(i)}{E^{\prime}(i)}=\frac{Q(i)}{E(i)}=R(i) .
$$

Cross multiplying gives equality in fact for these points.
Points to polynomials, have to deal with zeros!

Berlekamp-Welch algorithm decodes correctly when at most k errors!

Summary. Error Correction.

Communicate n packets, with k erasures.
How many packets? $n+k$
How to encode? With polynomial, $P(x)$.
Of degree? $n-1$
Recover? Reconstruct $P(x)$ with any n points!
Communicate n packets, with k errors.
How many packets? $n+2 k$
How to encode? With polynomial, $P(x)$. Of degree? $n-1$.
Recover?
Reconstruct error polynomial, $E(x)$, and $P(x)$!
Nonlinear equations.
Reconstruct $E(x)$ and $Q(x)=E(x) P(x)$. Linear Equations.
Polynomial division! $P(x)=Q(x) / E(x)$!
Reed-Solomon codes. Berlekamp-Welch Decoding. Perfection!

