Lecture 14. Outline.

1. Finish Polynomials and Secrets.
2. Finite Fields: Abstract Algebra
3. Erasure Coding

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.
Knowing k pts, find unique $P(x)$, evaluate $P(0)$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.
Knowing k pts, find unique $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.
Knowing k pts, find unique $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains $d+1$ pts.
Note: The points have to have different x values!
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i for $i \geq 1$ is point $(i, P(i) \bmod p)$.

Robustness: Any k shares gives secret.
Knowing k pts, find unique $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

There exists a polynomial...

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Proof of at least one polynomial:
Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial!
Construction proves the existence of a polynomial!

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).
$\Delta_{1}(x)=\frac{(x-3)}{1-3}=\frac{x-3}{-2}$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)
\end{aligned}
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6
\end{aligned}
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and $(3,0)$.

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=3(x-2)(x-3)$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=3(x-2)(x-3) \\
=3 x^{2}+1(\bmod 5)
\end{gathered}
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=3(x-2)(x-3) \\
=3 x^{2}+1(\bmod 5)
\end{gathered}
$$

Reiterating Examples.

$$
\Delta_{i}(x)=\frac{\Pi_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).

$$
\begin{aligned}
\Delta_{1}(x)= & \frac{(x-3)}{1-3}=\frac{x-3}{-2} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5)
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=3(x-2)(x-3) \\
=3 x^{2}+1(\bmod 5)
\end{gathered}
$$

Put the delta functions together.

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=m(1)+b \equiv m+b
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5)
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$.

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .

Simultaneous Equations Method.

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
& P(1)=m(1)+b \equiv m+b \equiv 3(\bmod 5) \\
& P(2)=m(2)+b \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .
And the line is...

$$
x+2 \bmod 5
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
P(1)=a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5)
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5) .
\end{aligned}
$$

So polynomial is $2 x^{2}+1 x+4(\bmod 5)$

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{array}{ccc}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv & y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv & y_{2}(\bmod p) \\
\vdots & \vdots & \vdots \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv & y_{k}(\bmod p)
\end{array}
$$

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{array}{ccc}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv & y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv & y_{2}(\bmod p) \\
\vdots & \vdots & \vdots \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv & y_{k}(\bmod p)
\end{array}
$$

Will this always work?

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{array}{ccc}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
\vdots & \vdots & \vdots \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv & y_{k}(\bmod p)
\end{array}
$$

Will this always work?
As long as solution exists and it is unique! And...

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{array}{ccc}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
\vdots & \vdots & \vdots \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv & y_{k}(\bmod p)
\end{array}
$$

Will this always work?
As long as solution exists and it is unique! And...

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{array}{ccc}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv & y_{2}(\bmod p) \\
\vdots & \vdots & \vdots \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv & y_{k}(\bmod p)
\end{array}
$$

Will this always work?
As long as solution exists and it is unique! And...
Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.

Existence:

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.
Existence:
Lagrange Interpolation.

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.
Existence:
Lagrange Interpolation.
Uniqueness: (proved last time)

Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d+1$ pts.
Existence:
Lagrange Interpolation.
Uniqueness: (proved last time)
At most d roots for degree d polynomial.

Finite Fields

Proof works for reals, rationals, and complex numbers.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime p is a finite field denoted by F_{p} or $G F(p)$.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime p is a finite field denoted by F_{p} or $G F(p)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$. Secrecy: Any $k-1$ knows nothing.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.
Efficiency: ???

Secret Sharing Revisited

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points. Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.
Efficiency: ???

Efficiency.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!
With k shares, reconstruct polynomial, $P(x)$.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!
(Within 1 bit of) any b-bit string possible!

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!
(Within 1 bit of) any b-bit string possible!
(Within 1 bit of) b-bits are missing: one $P(i)$.

Efficiency.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimal!
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!
(Within 1 bit of) any b-bit string possible!
(Within 1 bit of) b-bits are missing: one $P(i)$.
Within 1 of optimal number of bits.

Runtime.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $n-1$ polynomial $n+k$ times using $\log p$-bit numbers. $O\left(k n \log ^{2} p\right)$.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $n-1$ polynomial $n+k$ times using $\log p$-bit numbers. $O\left(k n \log ^{2} p\right)$.
2. Reconstruct secret by solving system of n equations using $\log p$-bit arithmetic. $O\left(n^{3} \log ^{2} p\right)$.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $n-1$ polynomial $n+k$ times using $\log p$-bit numbers. $O\left(k n \log ^{2} p\right)$.
2. Reconstruct secret by solving system of n equations using $\log p$-bit arithmetic. $O\left(n^{3} \log ^{2} p\right)$.
3. Matrix has special form so $O\left(n \log n \log ^{2} p\right)$ reconstruction.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $n-1$ polynomial $n+k$ times using $\log p$-bit numbers. $O\left(k n \log ^{2} p\right)$.
2. Reconstruct secret by solving system of n equations using $\log p$-bit arithmetic. $O\left(n^{3} \log ^{2} p\right)$.
3. Matrix has special form so $O\left(n \log n \log ^{2} p\right)$ reconstruction.

Faster versions in practice are almost as efficient.

A bit of counting.

What is the number of degree d polynomials over $G F(m)$?

A bit of counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.

A bit of counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$

A bit of counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!

Erasure Codes.

Satellite

GPS device

Erasure Codes.

Satellite

3 packet message.

GPS device

Erasure Codes.

Satellite

3 packet message.

Lose 3 out 6 packets.

GPS device

Erasure Codes.

Lose 3 out 6 packets.

GPS device

Erasure Codes.

GPS device

Erasure Codes.

Erasure Codes.

Problem: Want to send a message with n packets.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
Solution Idea: Use Polynomials!!!

Solution Idea.

n packet message, channel that loses k packets.

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message.

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message. Any n point values

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n-1$ polynomial

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n-1$ polynomial which has n coefficients!

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n-1$ polynomial which has n coefficients!

Alright!!!

Solution Idea.

n packet message, channel that loses k packets.
Must send $n+k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n-1$ polynomial which has n coefficients!
Alright!!!
Use polynomials.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.
3. Send $P(1), \ldots, P(n+k)$.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.
3. Send $P(1), \ldots, P(n+k)$.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n-1$ polynomial determined by any n points!
Erasure Coding Scheme: message $=m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}$. Each m_{i} is a packet.

1. Choose prime $p>2^{b}$ for packet size b (size $=$ number of bits).
2. $P(x)=m_{n-1} x^{n-1}+\cdots m_{0}(\bmod p)$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message!

Erasure Codes.

Satellite

GPS device

Erasure Codes.

Satellite
 n packet message.

GPS device

Erasure Codes.

Satellite

n packet message.

Lose k packets.

GPS device

Erasure Codes.

Satellite

n packet message. So send $n+k$!

Lose k packets.

GPS device

Erasure Codes.

Satellite

Lose k packets.

GPS device

Erasure Codes.

Satellite

n packet message. So send $n+k!$

Erasure Codes.

Satellite

n packet message. So send $n+k!$

Lose k packets.

Any n packets is enough!

Erasure Codes.

Satellite

n packet message. So send $n+k!$

Lose k packets.

Any n packets is enough!
n packet message.

Erasure Codes.

Satellite

n packet message. So send $n+k!$

Lose k packets.

Any n packets is enough!
n packet message.

Optimal.

Comparison with Secret Sharing.

Comparing information content:

Comparison with Secret Sharing.

Comparing information content:
Secret Sharing: each share is size of whole secret.

Comparison with Secret Sharing.

Comparing information content:
Secret Sharing: each share is size of whole secret.
Coding: Each packet has size $1 / n$ of the whole message.

Erasure Code: Example.

Send message of 1,4, and 4.

Erasure Code: Example.

Send message of 1,4, and 4 . up to 3 erasures.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.
$P(x)=x^{2}(\bmod 5)$

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1
\end{aligned}
$$

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{gathered}
P(x)=x^{2}(\bmod 5) \\
P(1)=1, P(2)=4,
\end{gathered}
$$

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send $(0, P(0)) \ldots(5, P(5))$.

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send $(0, P(0)) \ldots(5, P(5))$.

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send $(0, P(0)) \ldots(5, P(5))$.
6 points.

Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send ($0, P(0)) \ldots(5, P(5))$.
6 points. Better work modulo 7 at least!

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send $(0, P(0)) \ldots(5, P(5))$.
6 points. Better work modulo 7 at least!
Why?

Erasure Code: Example.

Send message of 1,4 , and 4 . up to 3 erasures. $n=3, k=3$
Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.

$$
\begin{aligned}
& P(x)=x^{2}(\bmod 5) \\
& P(1)=1, P(2)=4, P(3)=9=4(\bmod 5)
\end{aligned}
$$

Send $(0, P(0)) \ldots(5, P(5))$.
6 points. Better work modulo 7 at least!
Why? $\quad(0, P(0))=(5, P(5))(\bmod 5)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
P(1)=a_{2}+a_{1}+a_{0} \equiv 1(\bmod 7)
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7)$,

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0}$.

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$
$P(x)=2 x^{2}+4 x+2$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$
$P(x)=2 x^{2}+4 x+2$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

$$
a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)
$$

$$
P(x)=2 x^{2}+4 x+2
$$

$$
P(1)=1,
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

$$
a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)
$$

$$
P(x)=2 x^{2}+4 x+2
$$

$$
P(1)=1, P(2)=4
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

$$
a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)
$$

$$
P(x)=2 x^{2}+4 x+2
$$

$$
P(1)=1, P(2)=4, \text { and } P(3)=4
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

$$
a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)
$$

$$
P(x)=2 x^{2}+4 x+2
$$

$$
P(1)=1, P(2)=4, \text { and } P(3)=4
$$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$

$$
a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)
$$

$$
P(x)=2 x^{2}+4 x+2
$$

$$
P(1)=1, P(2)=4, \text { and } P(3)=4
$$

Send

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$
$P(x)=2 x^{2}+4 x+2$

$$
P(1)=1, P(2)=4, \text { and } P(3)=4
$$

Send
Packets: $(1,1),(2,4),(3,4),(4,7),(5,2),(6,0)$

Example

Make polynomial with $P(1)=1, P(2)=4, P(3)=4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 1(\bmod 7) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 7) \\
P(3)=2 a_{2}+3 a_{1}+a_{0} & \equiv 4(\bmod 7)
\end{aligned}
$$

$6 a_{1}+3 a_{0}=2(\bmod 7), 5 a_{1}+4 a_{0}=0(\bmod 7)$
$a_{1}=2 a_{0} . \quad a_{0}=2(\bmod 7) a_{1}=4(\bmod 7) a_{2}=2(\bmod 7)$
$P(x)=2 x^{2}+4 x+2$

$$
P(1)=1, P(2)=4, \text { and } P(3)=4
$$

Send
Packets: $(1,1),(2,4),(3,4),(4,7),(5,2),(6,0)$
Notice that packets contain "x-values".

Summary: Polynomials are useful!

Summary: Polynomials are useful!

- ..give Secret Sharing.

Summary: Polynomials are useful!

- ..give Secret Sharing.
- ..give Erasure Codes.

Summary: Polynomials are useful!

- ..give Secret Sharing.
- ..give Erasure Codes.

Next time: correct broader class of errors!

