

Polynomials. Secret Sharing.

I have a secret!

I have a secret!

A number from 0 to 10.

I have a secret! A number from 0 to 10. What is it?

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing!

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

Example Applications:

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

Example Applications:

Nuclear launch: need at least 3 out of 5 people to launch!

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

Example Applications:

Nuclear launch: need at least 3 out of 5 people to launch! Cloud service backup: several vendors, each knows nothing.

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

Example Applications:

Nuclear launch: need at least 3 out of 5 people to launch! Cloud service backup: several vendors, each knows nothing. data from any 2 to recover data.

Share secret among *n* people.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. **Roubustness:** Any *k* knows secret.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$. P(x) **contains** point (a,b) if b = P(a).

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

P(x) contains point (a, b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \mathfrak{R}$, use $x \in \mathfrak{R}$.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

P(x) contains point (a, b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \Re$, use $x \in \Re$.

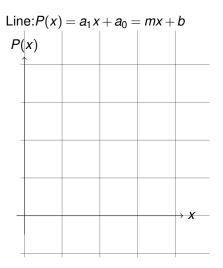
Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, ..., p-1\}$ and

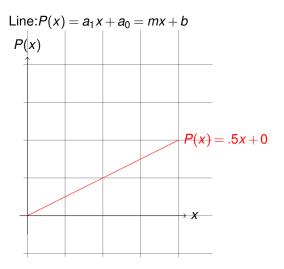
$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$

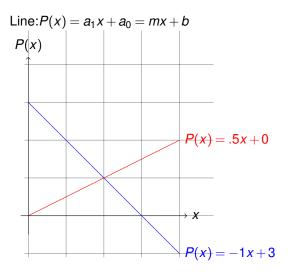
for $x \in \{0, \dots, p-1\}.$

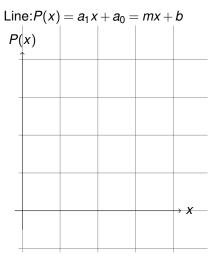
Line: $P(x) = a_1 x + a_0$

Line: $P(x) = a_1x + a_0 = mx + b$

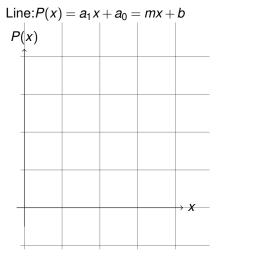




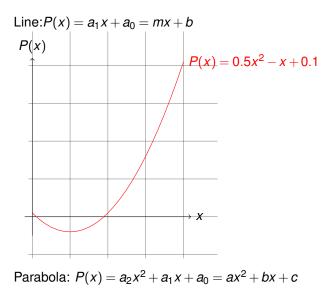


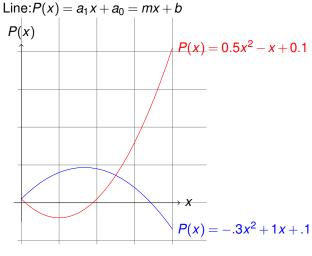


Parabola: $P(x) = a_2 x^2 + a_1 x + a_0$

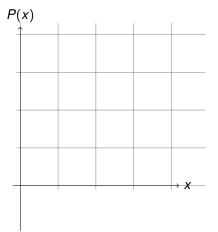


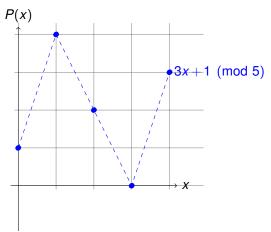
Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

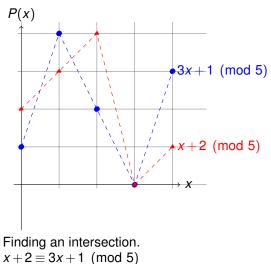




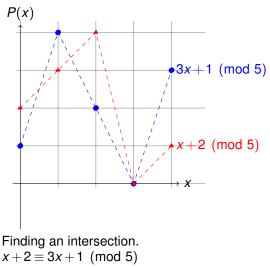
Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$





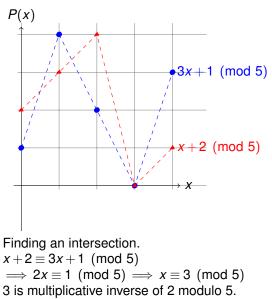


 \implies 2*x* \equiv 1 (mod 5)



 \implies 2x \equiv 1 (mod 5) \implies x \equiv 3 (mod 5) 2 is multiplicative inverse of 2 module 5

3 is multiplicative inverse of 2 modulo 5.



Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.²

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.² Two points specify a line.

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.² Two points specify a line. d = 1,

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.² Two points specify a line. d = 1, 1 + 1

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.² Two points specify a line. d = 1, 1 + 1 is 2!

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.²

Two points specify a line. d = 1, 1 + 1 is 2! Three points specify a parabola.

²Points with different x values.

Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.² Two points specify a line. d = 1, 1 + 1 is 2! Three points specify a parabola. d = 2, 2 + 1 = 3.

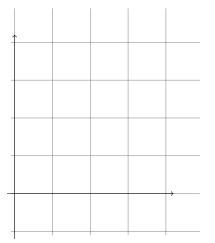
²Points with different x values.

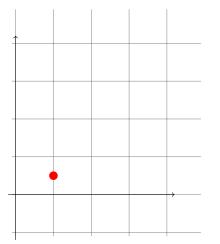
Fact: Exactly 1 degree $\leq d$ polynomial contains d + 1 points.²

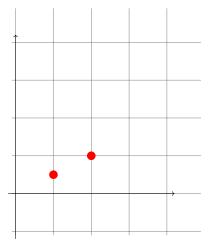
Two points specify a line. d = 1, 1 + 1 is 2! Three points specify a parabola. d = 2, 2 + 1 = 3.

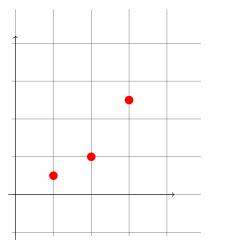
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains d + 1 pts.

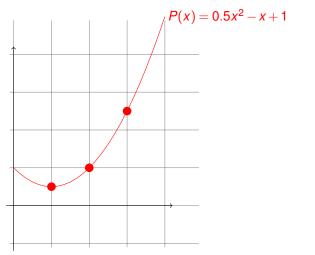
²Points with different x values.

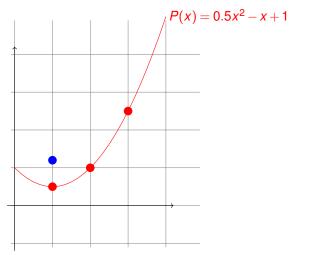


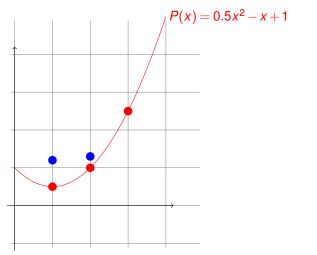


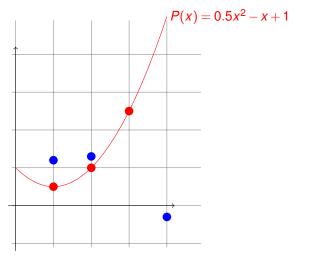


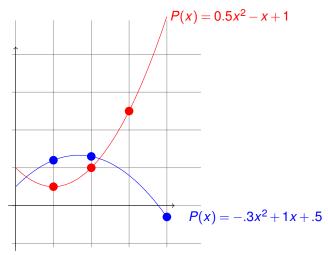




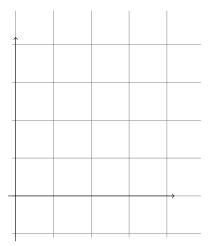


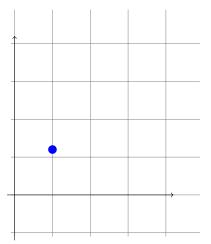


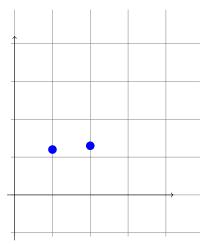


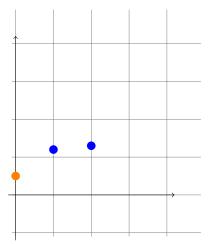


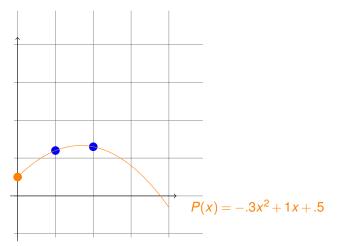
³Points with different x values.

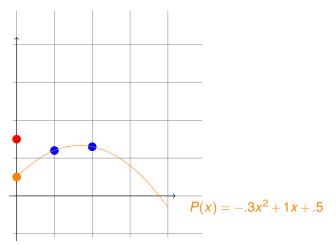


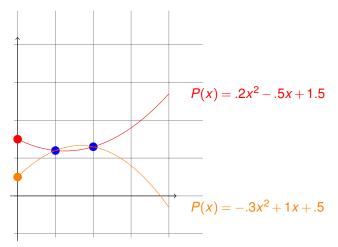


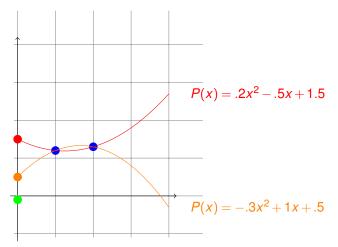


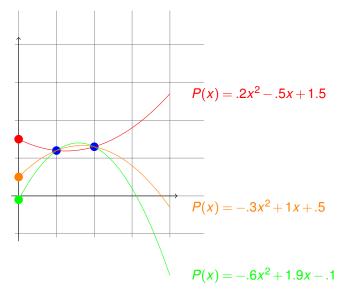


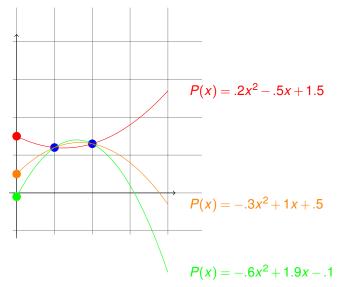












Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains d + 1 pts.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains d + 1 pts.

Shamir's *k* out of *n* Scheme:

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point
$$(i, P(i) \mod p)$$
.

Roubustness: Any k shares gives secret.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any k shares gives secret. Knowing k pts

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one *P*(*x*)

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0).

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). Secrecy: Any k - 1 shares give nothing.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). Secrecy: Any k - 1 shares give nothing. Knowing $\leq k - 1$ pts

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any k-1 shares give nothing. Knowing $\leq k-1$ pts \implies any P(0) is possible.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d*+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any k-1 shares give nothing. Knowing $\leq k-1$ pts \implies any P(0) is possible.

Remember: Secret: number from 0 to 10.

Remember: Secret: number from 0 to 10. Any one of you knows nothing!

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Shares: points on a line.

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Shares: points on a line. Secret: *y*-intercept.

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Shares: points on a line. Secret: *y*-intercept. Arithmetic Modulo 11.

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Shares: points on a line. Secret: *y*-intercept. Arithmetic Modulo 11.

Remember: Secret: number from 0 to 10. Any one of you knows nothing! Any two of you can figure it out!

Shares: points on a line. Secret: *y*-intercept. Arithmetic Modulo 11.

What's my secret?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

P(1) =

$$P(1) = m(1) + b \equiv m + b$$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second ..

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second ..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2. And the line is...

 $x+2 \mod 5$.

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

 $2m \equiv 4 \pmod{11}$

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6:

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

 $2m \equiv 4 \pmod{11}$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

 $12m = 24 \pmod{11}$

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

> $12m = 24 \pmod{11}$ $m = 2 \pmod{11}$

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

$$12m = 24 \pmod{11}$$

 $m = 2 \pmod{11}$

Backsolve: $2 + b \equiv 5 \pmod{11}$.

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

$$12m = 24 \pmod{11}$$

 $m = 2 \pmod{11}$

Backsolve: $2 + b \equiv 5 \pmod{11}$. Or $b = 3 \pmod{11}$.

What's my secret?

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

$$12m = 24 \pmod{11}$$

 $m = 2 \pmod{11}$

Backsolve: $2+b \equiv 5 \pmod{11}$. Or $b=3 \pmod{11}$. Secret is 3.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

 $P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
3 <i>a</i> ₁ +2 <i>a</i> ₀	≡	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	≡	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	≡	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$ $3a_1 + 2a_0 \equiv 1 \pmod{5}$ $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1})$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3)$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	≡	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2-1-4 \equiv 2 \pmod{5}$.

So polynomial is $2x^2 + 1x + 4 \pmod{5}$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \ \equiv \ y_k \pmod{p}$$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

. .

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

. .

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime *p* contains *d* + 1 pts.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0). Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0). Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0). Try $(x-2)(x-3) \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2"

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations...

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$. The same as before!

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j\neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j\neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j\neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j\neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

Numerator is 0 at $x_j \neq x_i$.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j\neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j\neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

Numerator is 0 at $x_j \neq x_j$.

Denominator makes it 1 at x_i .

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j\neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j\neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

Numerator is 0 at $x_j \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \dots + y_k \Delta_k(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}$$

Numerator is 0 at $x_j \neq x_j$.

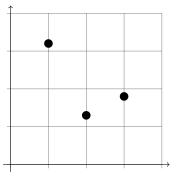
Denominator makes it 1 at x_i .

And..

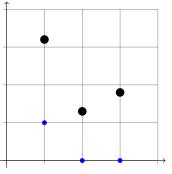
$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of a degree *d* polynomial!

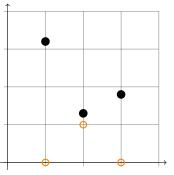


Points: (1,3.2), (2,1.3), (3,1.8).



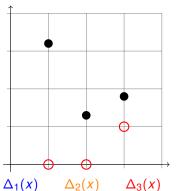
Points: (1,3.2), (2,1.3), (3,1.8).

 $\Delta_1(x)$

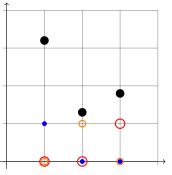


Points: (1,3.2), (2,1.3), (3,1.8).

 $\Delta_1(x) \qquad \Delta_2(x)$



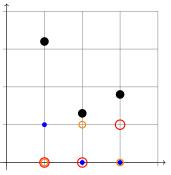
Points: (1,3.2), (2,1.3), (3,1.8).



Points: (1,3.2), (2,1.3), (3,1.8).

 $\Delta_1(x)$ $\Delta_2(x)$ $\Delta_3(x)$

Scale each Δ_i function and add to contain points.



Points: (1,3.2), (2,1.3), (3,1.8).

 $\Delta_1(x)$ $\Delta_2(x)$ $\Delta_3(x)$

Scale each Δ_i function and add to contain points.

 $P(x) = 3.2 \Delta_1(x) + 1.3 \Delta_2(x) + 1.8 \Delta_3(x)$

Interpolation and Existence

Interpolation takes d + 1 points and produces a degree d polynomial that contains the points.

Interpolation and Existence

Interpolation takes d + 1 points and produces a degree d polynomial that contains the points.

Construction proves the existence of a degree *d* polynomial that contains points!

Interpolation takes d + 1 points and produces a degree d polynomial that contains the points.

Construction proves the existence of a degree *d* polynomial that contains points!

Is it the only degree d polynomial that contains the points?

Uniqueness Fact. At most one degree *d* polynomial hits d+1 points.

Uniqueness Fact. At most one degree d polynomial hits d + 1 points. **Proof:**

Uniqueness Fact. At most one degree d polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

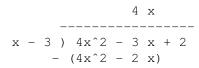
Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

4 xx - 3) $4x^2 - 3x + 2$



$$\begin{array}{c} 4 \ x + 4 \\ x - 3 \) \ 4x^2 - 3 \ x + 2 \\ - \ (4x^2 - 2 \ x) \\ - - - - - \\ 4 \ x + 2 \end{array}$$

$$4 x + 4 r 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$- (4x^{2} - 2 x)$$

$$- (4x + 2)$$

$$- (4 x - 2)$$

$$- 4$$

$$4 x + 4 r 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$- (4x^{2} - 2 x)$$

$$- (4 x + 2)$$

$$- (4 x - 2)$$

$$- 4$$

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

$$4 x + 4 r 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$- (4x^{2} - 2 x)$$

$$- (4 x + 2)$$

$$- (4 x - 2)$$

$$4$$

 $4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$ In general, divide P(x) by (x - a) gives Q(x) and remainder r.

Polynomial Division. Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$\begin{array}{c} 4 \ x + 4 \ r \ 4 \\ x - 3 \) \ 4x^2 - 3 \ x + 2 \\ - \ (4x^2 - 2 \ x) \\ - \\ - \ (4 \ x - 2) \\ - \\ 4 \end{array}$$

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r .
That is, $P(x) = (x - a)Q(x) + r$

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0. **Lemma 2:** P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x-r_1)(x-r_2)\cdots(x-r_d)$.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0. **Lemma 2:** P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x-r_1)(x-r_2)\cdots(x-r_d)$.

Proof Sketch: By induction.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0. **Lemma 2:** P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x-r_1)(x-r_2)\cdots(x-r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \ldots r_d$ are roots.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \ldots r_d$ are roots. Use the induction hypothesis.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \ldots r_d$ are roots. Use the induction hypothesis.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \ldots r_d$ are roots. Use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction. Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0. $ab = 0 \implies a = 0$ or b = 0 in field. Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \ldots r_d$ are roots. Use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Proof works for reals, rationals, and complex numbers.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses. Arithmetic modulo a prime *p* has multiplicative inverses.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses. Arithmetic modulo a prime p has multiplicative inverses. ..and has only a finite number of elements.

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime *p* has multiplicative inverses.
- .. and has only a finite number of elements.

Good for computer science.

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime p has multiplicative inverses..
- .. and has only a finite number of elements.
- Good for computer science.

Arithmetic modulo a prime *m* is a **finite field** denoted by F_m or GF(m).

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime p has multiplicative inverses..
- .. and has only a finite number of elements.
- Good for computer science.
- Arithmetic modulo a prime *m* is a **finite field** denoted by F_m or GF(m).
- Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.