Today.

Polynomials.
Secret Sharing.

A secret!

I have a secret!
A number from 0 to 10.
What is it?
Any one of you knows nothing!
Any two of you can figure it out!
Example Applications:
Nuclear launch: need at least 3 out of 5 people to launch!
Cloud service backup: several vendors, each knows nothing. data from any 2 to recover data.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0}
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
$P(x)$ contains point (a, b) if $b=P(a)$.
Polynomials over reals: $a_{1}, \ldots, a_{d} \in \mathfrak{R}$, use $x \in \mathfrak{R}$.
Polynomials $P(x)$ with arithmetic modulo $p:{ }^{1} a_{i} \in\{0, \ldots, p-1\}$ and

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} \quad(\bmod p)
$$

for $x \in\{0, \ldots, p-1\}$.

[^0]
Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5) \Longrightarrow x \equiv 3(\bmod 5)$
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{2}$
Two points specify a line. $d=1,1+1$ is 2 !
Three points specify a parabola. $d=2,2+1=3$.
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

[^1]
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$
${ }^{3}$ Points with different x values.

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \Longrightarrow any $P(0)$ is possible.

What's my secret?

Remember:
Secret: number from 0 to 10.
Any one of you knows nothing!
Any two of you can figure it out!
Shares: points on a line.
Secret: y-intercept.
Arithmetic Modulo 11.
What's my secret?

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .
And the line is...

$$
x+2 \bmod 5
$$

What's my secret?

$$
\begin{aligned}
& P(1)=m(1)+b \equiv 5 \quad(\bmod 11) \\
& P(3)=m(3)+b \equiv 9 \quad(\bmod 11)
\end{aligned}
$$

Subtract first from second.

$$
2 m \equiv 4 \quad(\bmod 11)
$$

Multiplicative inverse of $2(\bmod 11)$ is $6: 6 \times 2 \equiv 12 \equiv 1(\bmod 11)$ Multiply both sides by 6 .

$$
\begin{gathered}
12 m=24 \quad(\bmod 11) \\
m=2(\bmod 11)
\end{gathered}
$$

Backsolve: $2+b \equiv 5(\bmod 11)$. Or $b=3(\bmod 11)$.
Secret is 3 .

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5) .
\end{aligned}
$$

So polynomial is $2 x^{2}+1 x+4(\bmod 5)$

In general: Linear System.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!! So "Divide by 2 " or multiply by 3 .
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit $(1,3) ;(2,4) ;(3,0)$!
$P(x)=3 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations... $P(x)=2 x^{2}+1 x+4 \bmod 5$.
The same as before!

Interpolation: in general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{k} \Delta_{k}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Construction proves the existence of a degree d polynomial!

Interpolation: in pictures.

Points: $(1,3.2),(2,1.3),(3,1.8)$.

Scale each Δ_{i} function and add to contain points.

$$
P(x)=3.2 \Delta_{1}(x)+1.3 \Delta_{2}(x)+1.8 \Delta_{3}(x)
$$

Interpolation and Existence

Interpolation takes $d+1$ points and produces a degree d polynomial that contains the points.

Construction proves the existence of a degree d polynomial that contains points!

Is it the only degree d polynomial that contains the points?

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points. $R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d. Contradiction.

Must prove Roots fact.

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 r 4 \\
& \begin{array}{c}
x-3) 4 x^{\wedge} 2-3 x+2 \\
-\left(4 x^{\wedge} 2-2 x\right)
\end{array} \\
& -\left(4 x^{\wedge} 2-2 x\right) \\
& \begin{array}{r}
4 x+2 \\
-\quad(4 x-2)
\end{array} \\
& 4
\end{aligned}
$$

$4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)$
In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r.
That is, $P(x)=(x-a) Q(x)+r$

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 :
$P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$. It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then

$$
P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right) .
$$

Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1.
$P(x)=0$ if and only if $\left(x-r_{1}\right)$ is 0 or $Q(x)=0$.
$a b=0 \Longrightarrow a=0$ or $b=0$ in field.
Root either at r_{1} or root of $Q(x)$.
$Q(x)$ has smaller degree and $r_{2}, \ldots r_{d}$ are roots.
Use the induction hypothesis.
$d+1$ roots implies degree is at least $d+1$.
Roots fact: Any degree d polynomial has at most d roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a finite field denoted by F_{m} or $G F(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

[^0]: ${ }^{1} \mathrm{~A}$ field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

[^1]: ${ }^{2}$ Points with different x values.

