Today.

Polynomials.

Secret Sharing.

A secret!

I have a secret!

A number from 0 to 10.

What is it?

Any one of you knows nothing! Any two of you can figure it out!

Example Applications:

Nuclear launch: need at least 3 out of 5 people to launch! Cloud service backup: several vendors, each knows nothing. data from any 2 to recover data.

Secret Sharing.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Roubustness:** Any k knows secret.

Efficient: minimize storage.

Polynomials

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, ..., a_d \in \Re$, use $x \in \Re$.

Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, ..., p-1\}$ and

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$
 for $x \in \{0, \dots, p-1\}.$

¹A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, ..., p-1\}, + \pmod{p}, * \pmod{p}).$

Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Line:
$$P(x) = a_1x + a_0 = mx + b$$

$$P(x)$$

$$P(x) = a_1x + a_0 = mx + b$$

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$

Finding an intersection. $x+2 \equiv 3x+1 \pmod{5}$ $\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$ 3 is multiplicative inverse of 2 modulo 5. Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ²

Two points specify a line. d = 1, 1 + 1 is 2! Three points specify a parabola. d = 2, 2 + 1 = 3.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

²Points with different x values.

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains d+1 points. ³

³Points with different x values.

2 points not enough.

There is P(x) contains blue points and any(0, y)!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any *k* shares gives secret.

Knowing k pts \implies only one P(x) \implies evaluate P(0).

Secrecy: Any k-1 shares give nothing.

Knowing $\leq k-1$ pts \implies any P(0) is possible.

What's my secret?

Remember:

Secret: number from 0 to 10.

Any one of you knows nothing!

Any two of you can figure it out!

Shares: points on a line. Secret: *y*-intercept. Arithmetic Modulo 11.

What's my secret?

From d+1 points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

$$x+2 \mod 5$$
.

What's my secret?

$$P(1) = m(1) + b \equiv 5 \pmod{11}$$

 $P(3) = m(3) + b \equiv 9 \pmod{11}$

Subtract first from second.

$$2m \equiv 4 \pmod{11}$$

Multiplicative inverse of 2 (mod 11) is 6: $6 \times 2 \equiv 12 \equiv 1 \pmod{11}$ Multiply both sides by 6.

$$12m = 24 \pmod{11}$$

 $m = 2 \pmod{11}$

Backsolve: $2+b \equiv 5 \pmod{11}$. Or $b=3 \pmod{11}$. Secret is 3.

Quadratic

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$3a_1 + 2a_0 \equiv 1 \pmod{5}$$

$$4a_1 + 2a_0 \equiv 2 \pmod{5}$$
Subtracting 2nd from 3rd yields: $a_1 = 1$.
$$a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$$

 $a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$.

So polynomial is $2x^2 + 1x + 4 \pmod{5}$

In general: Linear System.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$
 \vdots
 $a_{k-1}x_k^{k-1} + \dots + a_0 \equiv y_k \pmod{p}$

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains d+1 pts.

Another Construction: Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try
$$(x-2)(x-3) \pmod{5}$$
.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

$$\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$$
 contains $(1,1)$; $(2,0)$; $(3,0)$.

$$\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$$
 contains $(1,0)$; $(2,1)$; $(3,0)$.

$$\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$$
 contains $(1,0)$; $(2,0)$; $(3,1)$.

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

The same as before!

Interpolation: in general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of a degree *d* polynomial!

Interpolation: in pictures.

Points: (1,3.2), (2,1.3), (3,1.8).

Scale each Δ_i function and add to contain points.

$$P(x) = 3.2 \Delta_1(x) + 1.3\Delta_2(x) + 1.8\Delta_3(x)$$

Interpolation and Existence

Interpolation takes d+1 points and produces a degree d polynomial that contains the points.

Construction proves the existence of a degree *d* polynomial that contains points!

Is it the only degree *d* polynomial that contains the points?

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d+1 points.

Proof:

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

Polynomial Division.

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r .
That is, $P(x) = (x - a)Q(x) + r$

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

$$P(x) = (x - a)Q(x).$$

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1.

P(x) = 0 if and only if $(x - r_1)$ is 0 or Q(x) = 0.

 $ab = 0 \implies a = 0 \text{ or } b = 0 \text{ in field.}$

Root either at r_1 or root of Q(x).

Q(x) has smaller degree and $r_2, \dots r_d$ are roots.

Use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.