Outline for next 2 lectures.

1. Cryptography \Rightarrow relation to Bijections
2. Public Key Cryptography
3. RSA system
3.1 Efficiency: Repeated Squaring.
3.2 Correctness: Fermat's Little Theorem.
3.3 Construction.

Cryptography ...

What is the relation between D and E (for the same secret s)?

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 ! $f(\cdot)$ is onto

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 ! $f(\cdot)$ is onto
if for every $y \in T$

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1! $f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1! $f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 ! $f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
$\{$ red, yellow, blue $\}$ and $\{1,2,3\}$?

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and \{1,2,3\}?

$$
f(r e d)=1, f(\text { yellow })=2, f(\text { blue })=3 .
$$

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and \{1,2,3\}? $f(r e d)=1, f($ yellow $)=2, f($ blue $)=3$.
\{red, yellow, blue $\}$ and $\{1,2\}$?

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and \{1,2,3\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=3$.
\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=3$.
\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one!

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$? $f(r e d)=1, f($ yellow $)=2, f($ blue $)=3$.
\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one! not one to one.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$? $f(r e d)=1, f($ yellow $)=2, f($ blue $)=3$.
\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one! not one to one.
$\{$ red, yellow $\}$ and $\{1,2,3\}$?

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping.
one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$?

$$
f(r e d)=1, f(\text { yellow })=2, f(\text { blue })=3 .
$$

\{red, yellow, blue $\}$ and $\{1,2\}$?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one! not one to one.
$\{$ red, yellow $\}$ and $\{1,2,3\}$?
$f(r e d)=1, f($ yellow $)=2$.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$?

$$
f(r e d)=1, f(\text { yellow })=2, f(\text { blue })=3 .
$$

\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one! not one to one.
$\{$ red, yellow $\}$ and $\{1,2,3\}$?
$f(r e d)=1, f($ yellow $)=2$.
Misses 3.

Excursion: Bijections.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq x^{\prime}$. Not 2 to 1 !
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
Same size?
\{red, yellow, blue\} and $\{1,2,3\}$?

$$
f(r e d)=1, f(\text { yellow })=2, f(\text { blue })=3 .
$$

\{red, yellow, blue\} and \{1,2\}?
$f(r e d)=1, f($ yellow $)=2, f($ blue $)=2$.
two to one! not one to one.
$\{$ red, yellow $\}$ and $\{1,2,3\}$?
$f($ red $)=1, f($ yellow $)=2$.
Misses 3. not onto.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$. $f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$. $f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue. Is $f(x)=x+1(\bmod m)$

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue. Is $f(x)=x+1(\bmod m)$ one-to-one?

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue. Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$ One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue. Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$. Onto:

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.
Injective? Surjective?

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.
Injective? Surjective?
We tend to use one-to-one and onto.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.
Two sets have the same size

Modular arithmetic examples.

$f: S \rightarrow T$ is one-to-one mapping. one-to-one: $f(x) \neq f\left(x^{\prime}\right)$ for $x, x^{\prime} \in S$ and $x \neq y$.
$f(\cdot)$ is onto
if for every $y \in T$ there is $x \in S$ where $y=f(x)$.
Recall: $f($ red $)=1, f($ yellow $)=2, f($ blue $)=3$
One-to-one if inverse: $g(1)=$ red, $g(2)=$ yellow, $g(3)=$ blue.
Is $f(x)=x+1(\bmod m)$ one-to-one? $g(x)=x-1(\bmod m)$.
Onto: range is subset of domain.
Is $f(x)=a x(\bmod m)$ one-to-one?
If $\operatorname{gcd}(a, m)=1, a x \neq a x^{\prime}(\bmod m)$.
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$.

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$

$$
\begin{gathered}
S=T . \text { Why? } \\
T \subseteq S
\end{gathered}
$$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$ One-to-one mapping from S to T !

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !

$$
\Longrightarrow|T| \geq|S|
$$

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !

$$
\Longrightarrow|T| \geq|S|
$$

Same set.

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$ Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse?

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$
Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse? T is S and therefore contains 1

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$
Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse? T is S and therefore contains 1 !

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$
Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse? T is S and therefore contains 1 !
What does this mean?

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$
Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse? T is S and therefore contains 1 !
What does this mean? There is an x where $a x=1$.

Inverses: continued.

Claim: $a^{-1}(\bmod m)$ exists when $\operatorname{gcd}(a, m)=1$.
Fact: $a x \neq a y(\bmod m)$ for $x \neq y \in\{0, \ldots m-1\}$
Consider $T=\{0 a(\bmod m), 1 a(\bmod m), \ldots, \ldots(m-1) a(\bmod m)\}$
Consider $S=\{0,1, \ldots, \ldots(m-1)\}$
$S=T$. Why?
$T \subseteq S$ since $a x(\bmod m) \in\{0, \ldots, m-1\}$
One-to-one mapping from S to T !
$\Longrightarrow|T| \geq|S|$
Same set.
Why does a have inverse? T is S and therefore contains 1 !
What does this mean? There is an x where $a x=1$.
There is an inverse of a !

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.
Disadvantages:
Shared secret!

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Disadvantages:

Shared secret!
Uses up one time pad..

Back to Cryptography ...

What is the relation between D and E (for the same secret s)?
D is the inverse function of E !
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ - bitwise $m \oplus s$.
$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Disadvantages:

Shared secret!
Uses up one time pad..or less and less secure.

Public key cryptography.

Eve

Public key cryptography.

Eve

Public key cryptography.

Private: k
Public: K

Eve

Public key cryptography.

Private: k
Public: K
Message m

Eve

Public key cryptography.

Eve

Public key cryptography.

Private: k

Public: K
Message m

Eve

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k
Public: K
Message m

Eve

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k
Public: K
Message m

Eve
Everyone knows key K!

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k

Eve
Everyone knows key K! Bob (and Eve

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k

Eve
Everyone knows key K! Bob (and Eve and me

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k
Public: K
Message m

Eve
Everyone knows key K!
Bob (and Eve and me and you

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: k

Eve

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Private: $k \quad$ Public: $K \quad$ Message m

Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.

Public key cryptography.

$$
m=D(E(m, K), k)
$$

Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is public key crypto unbreakable?

We don't really know.
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1) . d$ is the private key!
${ }^{1}$ Typically small, say $e=3$.

Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$. d is the private key!
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!

[^0]
Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$. d is the private key!
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.

[^1]
Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$. d is the private key!
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.

[^2]
Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$. d is the private key!
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$?

[^3]
Is public key crypto unbreakable?

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$.
Choose e relatively prime to $(p-1)(q-1) .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$. d is the private key!
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$?
Yes!
${ }^{1}$ Typically small, say $e=3$.

Example: $p=7, q=11$.

Example: $p=7, q=11$.
$N=77$.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ?

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.
$7(-17)+60(2)=1$

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.
$7(-17)+60(2)=1$

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.
$7(-17)+60(2)=1$
Confirm:

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.
$7(-17)+60(2)=1$
Confirm: $-119+120=1$

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$. How to compute d ? \quad egcd $(7,60)$.
$7(-17)+60(2)=1$
Confirm: $-119+120=1$
$d=e^{-1}=-17=43=(\bmod 60)$

Important Considerations

Q1: Why does RSA work correctly?

Important Considerations

Q1: Why does RSA work correctly? Fermat's Little Theorem!

Important Considerations

Q1: Why does RSA work correctly? Fermat's Little Theorem!
Q2: Can RSA be implemented efficiently?

Important Considerations

Q1: Why does RSA work correctly? Fermat's Little Theorem!
Q2: Can RSA be implemented efficiently? Yes, repeated squaring!

RSA on an Example.

RSA on an Example.

Public Key: $(77,7)$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7}$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$ uh oh!

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplcations. Ouch.

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplcations. Ouch.
In general, $O(N)$ multiplications in the value of the exponent N !

RSA on an Example.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2
$E(2)=2^{e}=2^{7} \equiv 128(\bmod 77)=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplcations. Ouch.
In general, $O(N)$ multiplications in the value of the exponent N ! That's not great.

Repeated Squaring to the rescue.

Repeated Squaring to the rescue.

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}
$$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$

Repeated Squaring to the rescue.

$$
51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)
$$

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.

Repeated Squaring to the rescue.

$51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)$.
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.

Repeated Squaring to the rescue.

$51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)$.
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!

Repeated Squaring to the rescue.

$51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)$.
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!
Repeated Squaring took 9 multiplications

Repeated Squaring to the rescue.

$51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)$.
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$
$51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!
Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x^{y}

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1}, x^{2},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute x^{1}, x^{2}, x^{4},

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots$,

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y\rfloor}$.

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2\lfloor\log y]}$.
2. Multiply together x^{i} where the $(\log (i))$ th bit of y is 1 .

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. That is: S contains representative of each of $1, \ldots, p-1$ modulo p.

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. That is: S contains representative of each of $1, \ldots, p-1$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p
$$

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. That is: S contains representative of each of $1, \ldots, p-1$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p
$$

Always decode correctly?

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p. That is: S contains representative of each of $1, \ldots, p-1$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p
$$

[^0]: ${ }^{1}$ Typically small, say $e=3$.

[^1]: ${ }^{1}$ Typically small, say $e=3$.

[^2]: ${ }^{1}$ Typically small, say $e=3$.

[^3]: ${ }^{1}$ Typically small, say $e=3$.

