Outline for next 2 lectures.

1. Cryptography = relation to Bijections
2. Public Key Cryptography
3. RSA system

3.1 Efficiency: Repeated Squaring.

3.2 Correctness: Fermat’s Little Theorem.
3.3 Construction.

Cryptography ...

Message m

What is the relation between D and E (for the same secret s)?

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.
{red, yellow} and {1,2,3}?
f(red) =1, f(yellow) = 2.
Misses 3. not onto.

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.

Two sets have the same size
if and only if there is a bijection between them!

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!
= [T| =S
Same set.
Why does a have inverse? T is S and therefore contains 1 !

What does this mean? There is an x where ax = 1.
There is an inverse of a!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Uses up one time pad..or less and less secure.

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K) E(m,K)
Alice @
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢, N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

Typically small, say e = 3.

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(-17)+60(2) = 1
Confirm: —119+120 =1
d=e"'=-17=43= (mod 60)

Important Considerations

Q1: Why does RSA work correctly? Fermat'’s Little Theorem!
Q2: Can RSA be implemented efficiently? Yes, repeated squaring!

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplcations. Ouch.

In general, O(N) multiplications in the value of the exponent N!
That’s not great.

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ... ,x?"%"

2. Multiply together x’ where the (log(i))th bit of y is 1.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S
contains representative of each of 1,...,p—1 modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1))=(1-(p—1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

