## Today

Review for Midterm.

## Propositional logic.

A proposition is a statement that is true or false.
Propositions?
$3=4-1$ ? Proposition!
$3=5$ ? Proposition!
3 ? Not a proposition!
$n=3$ ? Not a proposition...but a predicate.
Predicate: Statement with free variable(s).
Example: $x=3 \quad$ Given a value for $x$, becomes a proposition.
Predicate?
$n>3$ ? Predicate: $P(n)$ !
$x=y$ ? Predicate: $P(x, y)$ !
$x+y$ ? No. An expression, not a proposition.
Quantifiers:
$(\forall x) P(x)$. For every $x, P(x)$ is true.
$(\exists x) P(x)$. There exists an $x$, where $P(x)$ is true.
When all variables are quantified, the statement turns into a proposition.

$$
(\forall n \in N), n^{2} \geq n . \quad(\forall x \in R)(\exists y \in R) y>x .
$$

## Connecting Propositions with Boolean Operators

$A \wedge B, A \vee B, \neg A, A \Longrightarrow B$.
Propositional Expressions and Logical Equivalence

$$
\begin{aligned}
& (A \Longrightarrow B) \equiv(\neg A \vee B) \\
& \neg(A \vee B) \equiv(\neg A \wedge \neg B)
\end{aligned}
$$

Proofs: truth table or manipulation of known formulas.
Boolean simplification rules - De Morgan's law, commutativity, associativity, etc.

$$
(\forall x)(P(x) \wedge Q(x)) \equiv(\forall x) P(x) \wedge(\forall x) Q(x)
$$

## Proofs!

Direct: $P \Longrightarrow Q$
Example: $a$ is even $\Longrightarrow a^{2}$ is even.
Approach: What is even? $a=2 k$
$a^{2}=4 k^{2}$.
What is even?

$$
a^{2}=2\left(2 k^{2}\right)
$$

Integers closed under multiplication!
$a^{2}$ is even.
Contrapositive: $P \Longrightarrow Q$ or $\neg Q \Longrightarrow \neg P$.
Example: $a^{2}$ is odd $\Longrightarrow a$ is odd.
Contrapositive: $a$ is even $\Longrightarrow a^{2}$ is even.
Contradiction: $P$

$$
\begin{aligned}
& \neg P \Longrightarrow \text { false } \\
& \neg P \Longrightarrow R \wedge \neg R
\end{aligned}
$$

Useful for prove something does not exist:
Example: rational representation of $\sqrt{2}$ does not exist.
Example: finite set of primes does not exist. Example: rogue couple does not exist.

## Induction.

$$
P(0) \wedge((\forall n)(P(n) \Longrightarrow P(n+1) \equiv(\forall n \in N) P(n)
$$

Thm: For all $n \geq 1,8 \mid 3^{2 n}-1$.
Induction on $n$.
Base: $8 \mid 3^{2}-1$.
Induction Hypothesis: True for some $n$.

$$
\left(3^{2 n}-1=8 d\right)
$$

Induction Step:

$$
\begin{aligned}
3^{2 n+2} & -1=9\left(3^{2 n}\right)-1 \quad \text { (by induction hypothesis) } \\
& =9(8 d+1)-1 \\
& =72 d+8 \\
& =8(9 d+1)
\end{aligned}
$$

Divisible by 8 .

## Stable Marriage: a study in definitions and WOP.

$n$-men, $n$-women.
Each person has completely ordered preference list contains every person of opposite gender.

## Pairing.

Set of pairs $\left(m_{i}, w_{j}\right)$ containing all people exactly once. How many pairs? n.
People in pair are partners in pairing.
Rogue Couple in a pairing.
A $m_{j}$ and $w_{k}$ who like each other more than their current partners
Stable Pairing.
Pairing with no rogue couples.
Does stable pairing exist?
No, for roommates problem.

## Stable Marriage Algorithm (SMA).

(Also called Traditional Marriage Algorithm)

## Each Day:

Every man proposes to favorite woman who has not yet rejected him.
Every woman rejects all but best of the men who propose.
Useful Definitions:
Man crosses off woman who rejected him.
Woman's current proposer is "on string."
"Propose and Reject." : Either men propose or women. But not both. Traditional propose and reject where men propose.
Key Property: Improvement Lemma:
Every day, if man on string for woman, any future man on string is better.

Stability:
No rogue couple.
suppose rogue couple (M,W) $\Longrightarrow$ M proposed to $W$ $\Longrightarrow$ W ended up with someone she liked better than $M$. Not rogue couple!

## Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.
Man-optimal pairing is pairing where every man gets optimal partner.
Thm: SMA produces male optimal pairing, $S$.
Man optimal $\Longrightarrow$ Woman pessimal.
Woman optimal $\Longrightarrow$ Man pessimal.

## Graph Theory!

$G=(V, E)$
$V$ - set of vertices.
$E \subseteq V \times V$ - set of edges.
Focus on simple graphs (at most one edge from a vertex to another)
Undirected: no ordering to edge. Directed: ordered pair of vertices.
Adjacent, Incident, Degree.
In-degree, Out-degree.
Thm: Sum of degrees is $2|E|$.
Pair of Vertices are Connected:
If there is a (simple) path between them.
Related notions: cycle, walk, tour
Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.

## Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.
Algorithm:
Take a walk.
Property: return to starting point.
Proof Idea: Even degree.
Recurse on connected components.
Put together.
Property: walk visits every component.
Proof Idea: Original graph connected.

## Graph Types: Complete Graph.


$K_{n},|V|=n$
every edge present.
degree of vertex? $|V|-1$.
Very connected.
Lots of edges: $n(n-1) / 2$.

## Trees.



Definitions:



A connected graph without a cycle.
A connected graph with $|V|-1$ edges.
A connected graph where any edge removal disconnects it.
A connected acyclic graph where any edge addition creates a cycle.
To tree or not to tree!


Minimally connected, minimum number of edges to connect.

## Hypercube

Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

$$
\begin{aligned}
G & =(V, E) \\
|V| & =\{0,1\}^{n}, \\
|E| & =\{(x, y) \mid x \text { and } y \text { differ in one bit position. }\}
\end{aligned}
$$



## Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.
An $n$-dimensional hypercube consists of a 0 -subcube (1-subcube) which is a $n$ - 1 -dimensional hypercube with nodes labelled $0 x(1 x)$ with the additional edges $(0 x, 1 x)$.


## Hypercube:properties

Hamiltonian (Rudrata) Cycle: cycle that visits every node.
Eulerian? If $n$ is even.
Large Cuts: Cutting off $k$ nodes needs $\geq k$ edges.
"Best" cut? Cut apart subcubes: cuts off $2^{n}$ nodes with $2^{n-1}$ edges.

## ...Modular Arithmetic...

Arithmetic modulo $m$.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
and integer $i \equiv a(\bmod m)$
if $i=a+k m$ for integer $k$.
or if the remainder of $i$ divided by $m$ is $a$.
Can do calculations by taking remainders at the beginning,
in the middle or at the end.

$$
\begin{aligned}
& 58+32=90=6(\bmod 7) \\
& 58+32=2+4=6(\bmod 7) \\
& 58+32=2+-3=-1=6(\bmod 7)
\end{aligned}
$$

Negative numbers work the way you are used to.

$$
-3=0-3=7-3=4(\bmod 7)
$$

## Midterm format

Time: 120 minutes.
Many short answers.
Get at ideas that we study.
Know material well: fast, correct.
Know material medium: slower, less correct. Know material not so well: Uh oh.

Some longer questions.
Proofs, think about algorithms, properties, etc.
Not so much calculation.

## Good Luck!!!

