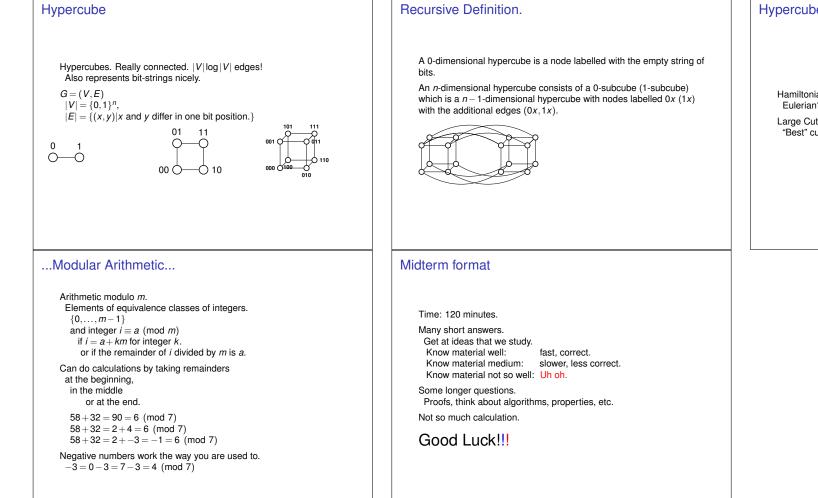
Today	Propositional logic. A proposition is a statement that is true or false.	Connecting Propositions with Boolean Operators
Review for Midterm.	Propositions? 3 = 4 - 1? Proposition! 3 = 5? Proposition! 3 = 5? Proposition! n = 3? Not a propositionbut a predicate. Predicate: Statement with free variable(s). Example: $x = 3$ Given a value for x, becomes a proposition. Predicate? n > 3? Predicate: $P(n)$! x = y? Predicate: $P(n)$! x = y? Predicate: $P(x, y)$! x + y? No. An expression, not a proposition. Quantifiers: $(\forall x) P(x)$. For every $x, P(x)$ is true. $(\exists x) P(x)$. There exists an x , where $P(x)$ is true. When all variables are quantified, the statement turns into a proposition. $(\forall n \in N), n^2 \ge n$. $(\forall x \in R)(\exists y \in R)y > x$.	$A \land B, A \lor B, \neg A, A \Longrightarrow B.$ Propositional Expressions and Logical Equivalence $(A \Longrightarrow B) \equiv (\neg A \lor B)$ $\neg (A \lor B) \equiv (\neg A \land \neg B)$ Proofs: truth table or manipulation of known formulas. Boolean simplification rules - De Morgan's law, commutativity, associativity, etc. $(\forall x)(P(x) \land Q(x)) \equiv (\forall x)P(x) \land (\forall x)Q(x)$
Proofs!	Induction.	Stable Marriage: a study in definitions and WOP.
Direct: $P \implies Q$ Example: <i>a</i> is even $\implies a^2$ is even. Approach: What is even? $a = 2k$ $a^2 = 4k^2$. What is even? $a^2 = 2(2k^2)$ Integers closed under multiplication! a^2 is even. Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$. Example: a^2 is odd $\implies a$ is odd. Contrapositive: <i>a</i> is even $\implies a^2$ is even. Contradiction: <i>P</i> $\neg P \implies false$ $\neg P \implies R \land \neg R$ Useful for prove something does not exist: Example: rational representation of $\sqrt{2}$ does not exist. Example: rogue couple does not exist.	$\begin{split} & P(0) \land ((\forall n)(P(n) \Longrightarrow P(n+1) \equiv (\forall n \in N) \ P(n). \\ & \text{Thm: For all } n \ge 1, 8 3^{2n} - 1. \\ & \text{Induction on } n. \\ & \text{Base: } 8 3^2 - 1. \\ & \text{Induction Hypothesis: True for some } n. \\ & (3^{2n} - 1 = 8d) \\ & \text{Induction Step:} \\ & 3^{2n+2} - 1 = 9(3^{2n}) - 1 \ (by \text{ induction hypothesis}) \\ & = 9(8d+1) - 1 \\ & = 72d + 8 \\ & = 8(9d+1) \\ & \text{Divisible by 8.} \\ \end{split}$	<i>n</i> -men, <i>n</i> -women.Each person has completely ordered preference list contains every person of opposite gender. Pairing. Set of pairs (m_i, w_j) containing all people <i>exactly</i> once. How many pairs? <i>n</i> . People in pair are partners in pairing. Rogue Couple in a pairing. A m_j and w_k who like each other more than their current partners Stable Pairing. Pairing with no rogue couples.Does stable pairing exist? No, for roommates problem.

Stable Marriage Algorithm (SMA). (Also called Traditional Marriage Algorithm)	Optimality/Pessimal	Graph Theory!
 Each Day: Every man proposes to favorite woman who has not yet rejected him. Every woman rejects all but best of the men who propose. Useful Definitions: Man crosses off woman who rejected him. Woman's current proposer is "on string." "Propose and Reject." : Either men propose or women. But not both. Traditional propose and reject where men propose. Key Property: Improvement Lemma: Every day, if man on string for woman, any future man on string is better. Stability: No rogue couple. suppose rogue couple (M,W) ⇒ M proposed to W ⇒ W ended up with someone she liked better than M. Not rogue couple! 	Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner. Man-optimal pairing is pairing where every man gets optimal partner. Thm: SMA produces male optimal pairing, <i>S</i> . Man optimal \implies Woman pessimal. Woman optimal \implies Man pessimal.	$\begin{split} G &= (V, E) \\ V \cdot \text{set of vertices.} \\ E &\subseteq V \times V \cdot \text{set of edges.} \\ \text{Focus on simple graphs (at most one edge from a vertex to another)} \\ \text{Undirected: no ordering to edge. Directed: ordered pair of vertices.} \\ \text{Adjacent, Incident, Degree.} \\ \text{In-degree, Out-degree.} \\ \text{Thm: Sum of degrees is } 2 E . \\ \text{Pair of Vertices are Connected:} \\ \text{If there is a (simple) path between them.} \\ \text{Related notions: cycle, walk, tour} \\ \text{Connected Component: maximal set of connected vertices.} \\ \text{Connected Graph: one connected component.} \end{split}$
Graph Algorithm: Eulerian Tour	Graph Types: Complete Graph.	Trees.
 Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once. Algorithm: Take a walk. Property: return to starting point. Proof Idea: Even degree. Recurse on connected components. Put together. Property: walk visits every component. Proof Idea: Original graph connected. 	$\int_{K_{n}, V = n}$ every edge present. degree of vertex? $ V = 1$. Very connected. Lots of edges: $n(n-1)/2$.	$ \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $



Hypercube:properties

Hamiltonian (Rudrata) Cycle: cycle that visits every node. Eulerian? If *n* is even.

Large Cuts: Cutting off k nodes needs $\ge k$ edges. "Best" cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.