70: Discrete Math and Probability Theory

 $\begin{array}{l} \mbox{Programming + Microprocessors \equiv Superpower!} \\ \mbox{What are your super powerful programs/processors doing?} \\ \mbox{Logic and Proofs!} \\ \mbox{Induction \equiv Recursion.} \\ \mbox{What can computers do?} \end{array}$

Work with discrete objects. Discrete Math \implies immense application.

Computers learn and interact with the world? E.g. machine learning, data analysis, robotics, ... Probability!

See note 1, for more discussion.

Admin

Course Webpage: http://www.eecs70.org/

Explains policies, has office hours, homework, midterm dates, etc.

Two midterms, final. midterm 1 before drop date. midterm 2 before grade option change.

Questions/Announcements \implies piazza: piazza.com/berkeley/fall2016/cs70

Instructors

Instructor: Sanjit Seshia. Professor of EECS (office: 566 Cory) Starting 12th year at Berkeley. PhD: in Computer Science, from Carnegie Mellon University. Research: Formal Methods (a.k.a. Computational Proof Methods) applied to cyber-physical systems (e.g. "self-driving" cars), computer security, ... Taught: 149, 172, 144/244, 219C, EECS149.1x on edX, ...

CS70: Lecture 1. Outline.

Today: Note 1. (Note 0 is background. Do read/skim it.) The language of proofs!

- 1. Propositions.
- 2. Propositional Forms.
- 3. Implication.
- 4. Truth Tables
- 5. Quantifiers
- 6. More De Morgan's Laws

Instructors

Jean Walrand – Prof. of EECS – UCB 257 Cory Hall – walrand@berkeley.edu

I was born in Belgium⁽¹⁾ and came to Berkeley for my PhD. I have been teaching at UCB since 1982.

My wife and I live in Berkeley. We have two daughters (UC alumni – Go Bears!). We like to ski and play tennis (both poorly). We enjoy classical music and jazz.

My research interests include stochastic systems, networks and game theory.

Propositions: Statements that are true or false.

$\sqrt{2}$ is irrational 2+2 = 4 2+2 = 3 826th digit of pi is 4 Jon Stewart is a good comedian All evens > 2 are unique sums of 2 primes 4+5	Proposition Proposition Proposition Proposition Not a Proposition Not a Proposition.	True True False False False
	Not a Proposition.	raise

Again: "value" of a proposition is ... True or False

Propositional Forms.

Put propositions together to make another... Conjunction ("and"): $P \land Q$ " $P \wedge Q$ " is True when both P and Q are True. Else False. Disjunction ("or"): $P \lor Q$ " $P \lor Q$ " is True when at least one P or Q is True. Else False. Negation ("not"): ¬P " $\neg P$ " is True when *P* is False . Else False . Examples: \neg "(2+2=4)" - a proposition that is ... False "2+2=3" \wedge "2+2=4" – a proposition that is ... False "2+2=3" \vee "2+2=4" – a proposition that is ... True Truth Tables for Propositional Forms. $P \mid Q \mid P \land Q$ $P \mid Q \mid P \lor Q$ Т Т ΤİΕ F Т F Т F Т F Т F ΙT FF F FF F One use for truth tables: Logical Equivalence of propositional forms! Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...because the two propositional forms have the sameTruth Table! Р Q $\neg (P \land Q)$ $\neg P \lor \neg Q$ Т Т F TIF F F FIT F F

F DeMorgan's Law's for Negation: distribute and flip!

F

$$\neg(P \land Q) \equiv \neg P \lor \neg Q \qquad \neg(P \lor Q) \equiv \neg P \land \neg Q$$

Т

т

Propositional Forms: guick check!

 $P = \sqrt[n]{2}$ is rational" Q = "826th digit of pi is 2" P is ...False. Q is ...True .

 $P \wedge Q$... False $P \lor Q \dots$ True $\neg P \dots$ True

Implication.

 $P \implies Q$ interpreted as If P. then Q.

True Statements: $P, P \implies Q$. Conclude: Q is true. Example: Statement: If you stand in the rain, then you'll get wet. P = "you stand in the rain" Q = "you will get wet" Statement: "Stand in the rain" Can conclude: "you'll get wet."

Put them together..

Propositions:

 P_1 - Person 1 rides the bus. P_2 - Person 2 rides the bus.

Suppose we can't have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn't.

Propositional Form:

 $\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$

Who can ride the bus? What combinations of people can ride the bus?

This seems ...complicated.

We need a way to keep track!

Non-Consequences/consequences of Implication

The statement " $P \implies Q$ "

only is False if P is True and Q is False.

False implies nothing P False means Q can be True or False Anything implies true. P can be True or False when Q is True

If chemical plant pollutes river, fish die. If fish die, did chemical plant polluted river?

Not necessarily.

 $P \implies Q$ and Q are True does not mean P is True

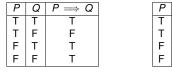
Instead we have: $P \Longrightarrow Q$ and P are True *does* mean Q is True.

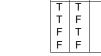
Be careful out there!

Some Fun: use propositional formulas to describe implication? $((P \Longrightarrow Q) \land P) \Longrightarrow Q.$

$P \implies Q$

- ▶ If P. then Q.
- ► Q if P.
- ▶ P only if Q.
- ▶ *P* is sufficient for *Q*.
- ► Q is necessary for P.





 $Q | \neg P \lor Q$

Т

F

Т

Т

 $\neg P \lor Q \equiv P \Longrightarrow Q.$

These two propositional forms are logically equivalent!

Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- ► x > 2
- ▶ *n* is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., Q(x) = "x is even"

Same as boolean valued functions from 61A or 61AS!

- ► $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."
- ▶ R(x) = "x > 2"
- G(n) = "n is even and the sum of two primes"
- Next: Statements about boolean valued functions!!

Quantifiers..

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S"

Wait! What is S?

S is the **universe**: "the type of x".

Universe examples include..

- $N = \{0, 1, \ldots\}$ (natural numbers).
- $\blacktriangleright Z = \{..., -1, 0, 1, ...\}$ (integers)
- \triangleright Z⁺ (positive integers)
- See note 0 for more!

Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don't die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \equiv .

$$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.$$

- Converse of $P \implies Q$ is $Q \implies P$. If fish die the plant pollutes. Not logically equivalent!
- **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or $P \iff Q$. (Logically Equivalent: \iff .)

Quantifiers..

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "P(x) is true for some x in S" For example:

 $(\exists x \in N)(x = x^2)$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier; $(\forall x \in S)$ (P(x)). means "For all x in S P(x) is True ."

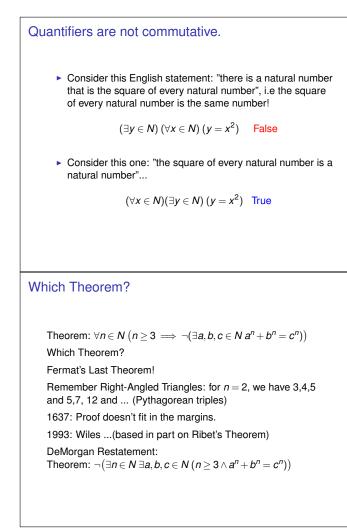
Examples:

"Adding 1 makes a bigger number."

 $(\forall x \in N) (x+1 > x)$

"the square of a number is always non-negative"

 $(\forall x \in N)(x^2 \ge 0)$



QuantifiersnegationDeMorgan again.	
Consider	
$\neg(\forall x\in \mathcal{S})(\mathcal{P}(x)),$	
By DeMorgan's law,	Con
$ eg(\forall x \in \mathcal{S})(\mathcal{P}(x)) \iff \exists (x \in \mathcal{S})(\neg \mathcal{P}(x)).$	
English: there is an x in S where $P(x)$ does not hold. What we do in this course! We consider claims.	Equ
Claim: $(\forall x) P(x)$ "For all inputs x the program works." For False, find x, where $\neg P(x)$. Counterexample. Bad input. Case that illustrates bug. For True : prove claim. Next lectures	Eng
Summary.	
Propositions are statements that are true or false.	
Propositional forms use \land,\lor,\neg .	
The meaning of a propositional form is given by its truth table.	
Logical equivalence of forms means same truth tables.	
Implication: $P \Longrightarrow Q \iff \neg P \lor Q$.	
Contrapositive: $\neg Q \implies \neg P$ Converse: $Q \implies P$	
Predicates: Statements with "free" variables.	
Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$	
Now can state theorems! And disprove false ones!	
DeMorgans Laws: "Flip and Distribute negation" $\neg (P \lor Q) \iff (\neg P \land \neg Q)$ $\neg \forall x P(x) \iff \exists x \neg P(x).$	
Next Time: proofs!	

Negation of exists.

Consider

 $\neg(\exists x \in S)(P(x))$

Equivalent to:

 $\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$

English: means that for all x in S, P(x) does not hold.