
CS 70 Discrete Mathematics and Probability Theory
Fall 2016 Seshia and Walrand Note 7

1 Bijections
The notion of a mathematical function, i.e. a mapping f from an input set A to an output set B, is ubiquitous
in our everyday lives. For example, your professor might assign you a letter grade of A through F based on a
function which maps your numerical grade, i.e. an integer from 0 to 100, to the set {“A”,“B”,“C”,“D”,“F”}.
Or consider the process of paying federal taxes, in which your income level in dollars is mapped via a
function to a tax bracket which dictates the percentage of tax you must pay. Both of these are examples
of functions, which most generally can be described using the notation f : A 7→ B. Here, A is a set called
the domain of f , and B is a set known as the range of f . Of all the possible functions in the wild, there
is a special type which turns out to be particularly useful in computer science, specifically in the study of
cryptography — namely, the notion of a bijective function. It is this class of functions which we study in
this lecture.

Sanity check! Consider the “birthday function” f , which given a person’s birth date, outputs the age of that
person. What are the domain A and range B of f ?

Intuitively, a bijection is a function with the property that any output of the function can be uniquely mapped
back to some input. More formally, a function f : A 7→ B is a bijection iff for all b ∈ B, there exists a
unique pre-image a ∈ A such that f (a) = b. Let us demonstrate with the following example of a function
f : {0, . . . ,m−1} 7→ {0, . . . ,m−1}:

f (x) = x+1 mod m.

Here, f is a bijection since the unique pre-image of any y ∈ {0, . . . ,m−1} is y− 1. The special case of
m = 4 is depicted in Figure 1; note the special property that each element on the right side has precisely one
matching element on the left side.
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Figure 1: The bijection f (x) = x+1 mod 4 with domain A = {0, . . . ,3} and range B = {0, . . . ,3}.
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Sanity check! Consider the same function f (x) = x+ 1 mod 4, except now with A = {0, . . . ,4} and range
B = {0, . . . ,3}. Is f still a bijection? Why not? (Give two elements of A which map to the same element of
B.)

If you stare at Figure 1 long enough, you might realize that the property of being a bijection is actually
equivalent to having two separate properties: (1) Each element on the right has some pre-image on the left,
and (2) if two arrows are incident on an element on the right, then both arrows must originate from the same
element on the left. More formally, these properties can be stated as:

1. f is onto or surjective: Any b ∈ B has a pre-image in A, i.e. for all b ∈ B there exists an a ∈ A such
that f (a) = b.

2. f is one-to-one or injective: For all a,a′ ∈ A, if f (a) = f (a′) then a = a′.

To help solidify our understanding of bijections, let us consider two more functions. First, recall the example
given at the start of this lecture about the function mapping a numerical grade in the set {0,1, . . . ,100} to a
letter grade {“A”,“B”,“C”,“D”,“F”}. Is this a bijection? No, since each letter grade has many numerical
grades mapped to it. (In fact, it is worth noting that there cannot exist a bijection between these two sets,
since they have different sizes. This connection between bijections and set sizes is the key to Cantor’s
celebrated idea that there is more than one notion of infinity!) Next, consider the following function g
mapping {0, . . . ,m−1} to itself:

g(x) = 2x mod m. (1)

It turns out that g is only a bijection if m is odd.

Sanity check!

1. Show that for the value m = 4, the function g is not a bijection since it is not one-to-one. Can you
generalize your proof to arbitrary m?

2. Draw a diagram analogous to Figure 1 to show that for m = 5, the function g is a bijection.

A nice alternate way of thinking about bijectivity is the following, which will prove useful in our discussion
on cryptography in this lecture.

Lemma 7.1. A function f : A→A is a bijection iff there is an inverse function g : A→A such that g( f (x))= x
and f (g(y)) = y for all x,y ∈ A.

Proof. We give a direct proof. First assume there exists an inverse function g as described in the claim. Then,
to see that f is one-to-one, note that whenever f (x) = f (x′), we have that x = g( f (x)) = g( f (x′)) = x′, as
desired. To see that f is onto, note that for any y ∈ A we have f (g(y)) = y, so g(y) ∈ A is the pre-image of y.

Conversely, assume f is bijective. This means every y ∈ A has a unique pre-image x ∈ A such that f (x) = y.
Define g : A→ A by g(y) = x. Then we see that by construction, we have f (g(y)) = y, and similarly,
g( f (x)) = g(y) = x. This shows that g is the inverse function of f , as desired.
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Sanity check! Show that the function g from Equation (2) is a bijection for the case m = 5 by explicitly
describing an inverse function as in Lemma 7.1.

2 Fermat’s Little Theorem
In 1640, Pierre de Fermat stated one of the fundamental results of elementary number theory, nowadays
known as Fermat’s Little Theorem. Ultimately, our goal in this lecture is to study the use of bijections in
cryptography, and it turns out Fermat’s Little Theorem will be a crucial tool in this venture. Thus, we state
and prove it now. Its proof also uses the concept of a bijection.

Theorem 7.1. [Fermat’s Little Theorem] For any prime p and any a ∈ {1,2, . . . , p−1}, we have ap−1 ≡
1 mod p.

Proof. Let S = {1,2, . . . , p− 1}. We give a direct proof consisting of two parts. First, we show that the
function f : S→ S such that f (x)≡ ax mod p is a bijection. Second, we use the fact that f is a bijection to
prove the claim.

Sanity check! Verify that for a = 3, p = 7, the function f (x)≡ ax mod p is a bijection corresponding to the
image below.
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Figure 2: Multiplication by (3 mod 7)

To prove that f is indeed a bijection, since the domain and range of f are the same set S, it suffices to prove
that ax mod p and ax′ mod p are distinct if x 6= x′. To prove the latter, assume for sake of contradiction that
there exist distinct x,x′ ∈ S such that

a · x≡ a · x′ (mod p).

Then, since by definition a is non-zero, and since a and p are co-prime, then by Theorem 6.2, we know
a has a multiplicative inverse a−1 modulo p. Multiplying both sides of the equation above by a−1 thus
yields x ≡ x′ (mod p), which contradicts our assumption that x and x′ are distinct. We conclude that f is a
bijection.

Let us now prove our main claim. Since f is a bijection, its image is S; this implies that the product of all
elements in S equals the product of all elements in the image of f . Specifically, we have

(p−1)!≡ ap−1 · (p−1)! (mod p).
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Since (p−1)! is relatively prime to p, it again follows by Theorem 6.2 that we can divide both sides of this
equation by (p−1)!, yielding the desired statement.

3 Public Key Encryption and RSA
One of the oldest and most fundamental problems facing mankind has been: How to send a message securely
from a sender, say Alice, to a receiver Bob, so that an eavesdropper Eve gains little to no information about
the message? As you might imagine, this task has a host of applications in areas ranging from banking to
the military. In fact, Julius Caesar himself was known to use an encryption scheme nowadays known as the
Caesar cipher in order to protect messages of military significance. Unfortunately, Caesar’s cipher had a
significant drawback: In order to encode and decode messages, one needed to know a secret key. This led
to a chicken-and-the-egg scenario — how does Alice share her secret key with Bob without Eve learning
anything about it to begin with? In the 1970s, a breakthrough solution to this problem was discovered in the
form of public key encryption.

In public key encryption, there are two keys: One for encryption, E, which is public knowledge to everyone,
and one for decryption, D, which is known only by the receiver, Bob. In this way, anyone in the world can
send Bob a secret message: The sender encodes the message using E, sends the encrypted message to Bob,
who then decrypts it using D. How could such a scheme be possible? It turns out the secret ingredient is
a special bijection which is easy to compute (i.e. anyone in the world can do it), but believed to be very
difficult to invert without knowledge of a secret key, which only Bob possesses. This special bijection is
known as the RSA function, named after its inventors Ronald Rivest, Adi Shamir and Leonard Adleman,
and is as follows:

E(x)≡ xe mod N,

where N = pq for two large primes p and q, E : {0, . . . ,N− 1} 7→ {0, . . . ,N− 1}, and e is relatively prime
to (p−1)(q−1). It may not be clear a priori that this is indeed a bijection; we shall prove this shortly. The
inverse of the RSA function is given by the decryption operation:

D(x)≡ xd mod N

where d is the multiplicative inverse of e mod (p−1)(q−1). RSA now works as follows: The public key
is (N,e), known to everyone in the world, and the private key is d, known only to Bob. To send a secret
message x ∈ {1, . . . ,N−1} to Bob, Alice applies the encryption function E to x to obtain a ciphertext E(x),
which she then sends to Bob. Upon receipt of Alice’s ciphertext E(x), Bob applies his decryption function D
to recover x. This should convince you that RSA allows you to indeed encrypt and decrypt a message x. But
is it secure? We defer this discussion to Section 3.1. For now, let us prove that indeed D(E(x)) = x for all
x ∈ {1, . . . ,N−1}, which in turn (by Theorem 7.1) implies that E is a bijection.

Theorem 7.2. For E and D as defined above, we have D(E(x)) = x mod N for all x ∈ {0,1, . . . ,N−1}.

Proof. To prove the statement, we have to show that

(xe)d = x mod N for every x ∈ {0,1, . . . ,N−1}, (2)

where recall N = pq for primes p and q, gcd(e,(p− 1)(q− 1)) = 1, and d is the multiplicative inverse
of e mod (p− 1)(q− 1). Let’s consider the exponent, which is ed. By definition of d, we know that
ed = 1 mod (p−1)(q−1); hence we can write ed = 1+ k(p−1)(q−1) for some integer k, and therefore

xed− x = x1+k(p−1)(q−1)− x = x(xk(p−1)(q−1)−1). (3)
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Looking back at Equation (2), our goal is to show that this last expression in Equation (3) is equal to 0
mod N for every x. To do this, we show that the expression is divisible both by p and q; thus, since p and q
are primes, the expression must also be divisible by N = pq, which will yield our claim.

We begin by showing that x(xk(p−1)(q−1)−1) in (3) is divisible by p. We have two cases to consider:

Case 1: (x is a multiple of p) In this case, p clearly divides the expression in (3) since p | x.

Case 2: (x is not a multiple of p) Since x 6= 0 mod p, we can use Fermat’s Little Theorem to deduce that
xp−1 = 1 mod p. Then (xp−1)k(q−1) ≡ 1k(q−1) mod p, which implies that xk(p−1)(q−1)−1 = 0 mod p,
and so p divides the expression in (3).

The proof that q | x(xk(p−1)(q−1)−1) is identical. This completes the proof.

3.1 Security of RSA
We have thus far shown that the RSA protocol is correct, in the sense that Alice can encrypt messages
in such a way that Bob can reliably decrypt them again. But how do we know that it is secure, i.e., that
Eve cannot obtain any information about Alice’s message x from the ciphertext E(x)? To be clear, there
is no known formal proof of this fact. Rather, the security of RSA hinges upon the following widely held
assumption:

Given N, e and y = xe mod N, there is no efficient algorithm for determining x.

To help us appreciate why this assumption may be true, let us brainstorm how Eve might try to guess x:

• (Brute force) The naive approach would be via brute force — simply try all possible values of x, each
time checking whether xe = y mod N. But this approach is unbelievably inefficient; Eve would have
to try O(N) values of x, which if N is a 512-bit number, boils down to 2512 values of x to try — this
number is larger than estimates for the age of the Universe in femtoseconds!

• (Reduction to factoring) Eve could be more clever and instead attempt to factor N to into its prime fac-
tors p and q; then, she could compute d by determining the multiplicative inverse of e mod (p−1)(q−
1). But this requires the ability to factor large numbers, a task which is also considered impossible to
solve efficiently.

• (Computing (p−1)(q−1) directly) Finally, Eve could try to compute (p−1)(q−1) without factoring
N; but it turns out this is equivalent to factoring N.

Thus, the hardness of RSA depends on the presumed difficulty of factoring large numbers, known as the
Factoring Problem. In fact, the Factoring Problem occupies a special place in theoretical computer science.
It is one of the few known problems which is neither known to be efficiently solvable (i.e. in the complexity
class P), nor intractable (i.e. complete for the class NP). However, there has been a remarkable develop-
ment over the last two decades; it turns out the Factoring Problem can be solved efficiently on a quantum
computer!

Sanity check! Our discussion regarding the brute force approach above deserves a moment’s reflection, in
particular with respect to the following common fallacy: Namely, in order to try all possible factors x of N
requires O(N) iterations, which is often interpreted as “polynomial time” since the algorithm runs in time
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linear in N. Why is this algorithm not “polynomial time”? (Hint: What is the relevant quantity with respect
to which we typically measure complexity?)

3.2 Implementations of RSA
We close this note with a brief discussion of implementation issues regarding RSA. Since we have argued
that breaking RSA is impossible because factoring would take a very long time, we should check that the
computations that Alice and Bob themselves have to perform are much simpler, and can be done efficiently.

There are really only two non-trivial things that Alice and Bob have to do:

1. Bob has to find prime numbers p and q, each having many (say, 512) bits.

2. Both Alice and Bob have to compute exponentials mod N. (Alice has to compute xe mod N, and Bob
has to compute yd mod N.)

Both of these tasks can be carried out efficiently. The first requires the implementation of an efficient test
for primality as well as a rich source of primes. You will learn how to tackle each of these tasks in the
algorithms course CS170. The second requires an efficient algorithm for modular exponentiation known as
“repeated squaring", which is not very difficult, but will also be discussed in detail in CS170.

To summarize, then, in the RSA protocol Bob need only perform simple calculations such as multiplication,
exponentiation and primality testing to determine the encryption and decryption keys. Similarly, Alice and
Bob need only perform simple calculations to lock and unlock the secret message respectively — operations
that any pocket computing device could handle. By contrast, to unlock the message without the key, Eve
would have to perform operations like factoring large numbers, which (at least according to widely accepted
belief) requires more computational power than all of the world’s most sophisticated computers combined!
This compelling guarantee of security without the need for private keys explains why the RSA cryptosystem
is such a revolutionary development in cryptography.
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