
CS 70 Discrete Mathematics and Probability Theory
Fall 2016 Seshia and Walrand HW 11

1 Sundry
Before you start your homework, write down your team. Who else did you work with on this
homework? List names and email addresses. (In case of hw party, you can also just describe the
group.) How did you work on this homework? Working in groups of 3-5 will earn credit for your
"Sundry" grade.

Please copy the following statement and sign next to it:

I certify that all solutions are entirely in my words and that I have not looked at another student’s
solutions. I have credited all external sources in this write up.
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2 Problems
1. Those 3407 Votes

In the aftermath of the 2000 US Presidential Election, many people have claimed that un-
usually large number of votes cast for Pat Buchanan in Palm Beach County are statistically
highly significant, and thus of dubious validity. In this problem, we will examine this claim
from a statistical viewpoint.

The total percentage votes cast for each presidential candidate in the entire state of Florida
were as follows:

Gore Bush Buchanan Nader Browne Others
48.8% 48.9% 0.3% 1.6% 0.3% 0.1%

In Palm Beach County, the actual votes cast (before the recounts began) were as follows:

Gore Bush Buchanan Nader Browne Others Total
268945 152846 3407 5564 743 781 432286

To model this situation probabilistically, we need to make some assumptions. Let’s model the
vote cast by each voter in Palm Beach County as a random variable Xi, where Xi takes on each
of the six possible values (five candidates or “Others”) with probabilities corresponding to
the Florida percentages. (Thus, e.g., Pr[Xi = Gore] = 0.488.) There are a total of n = 432286
voters, and their votes are assumed to be mutually independent. Let the r.v. B denote the
total votes cast for Buchanan in Palm Beach County (i.e., the number of voters i for which
Xi = Buchanan).

(a) Compute the expectation E[B] and the variance Var(B).

(b) Use Chebyshev’s inequality to compute an upper bound b on the probability that Buchanan
receives at least 3407 votes, i.e., find a number b such that

Pr[B≥ 3407]≤ b.

Based on this result, do you think Buchanan’s vote is significant?

(c) Suppose that your bound b in part (b) is exactly accurate, i.e., assume that Pr[X ≥
3407] is exactly equal to b. [In fact the true value of this probability is much smaller]
Suppose also that all 67 counties in Florida have the same number of voters as Palm
Beach County, and that all behave independently according to the same statistical model
as Palm Beach County. What is the probability that in at least one of the counties,
Buchanan receives at least 3407 votes? How would this affect your judgment as to
whether the Palm Beach tally is significant?

(d) Our model assumes that all voters behave like the fabled “swing voters,” in the sense
that they are undecided when they go to the polls and end up making a random decision.
A more realistic model would assume that only a fraction (say, about 20%) of voters are
in this category, the others having already decided. Suppose then that 80% of the voters
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in Palm Beach County vote deterministically according to the state-wide proportions
for Florida, while the remaining 20% behave randomly as described earlier. Does your
bound b in part (b) increase, decrease or remain the same under this model? Justify your
answer.

2. Statistical hypothesis testing
On one of the Mythbusters episodes1, the Mythbusters decided to run an experiment to test
whether toast tends to land buttered side down.

At the beginning of the episode, Adam and Jamie built a first attempt at a mechanical rig to
drop toast in a controlled fashion. When they tested it on 10 unbuttered pieces of toast as
a sanity check, 7 pieces fell upside down and 3 pieces fell right-side up. Adam concluded
based upon these numbers that this first rig was obviously biased, so he threw it away in
disgust and they built a new rig. Was Adam right, or is this just another case where he jumps
to conclusions too quickly?

Let p denote the probability that, if we drop 10 pieces of unbuttered toast from an unbiased
rig (i.e., a rig where each unbuttered piece of toast has a 50% chance of falling upside down
and a 50% chance of falling right-side up), 7 or more of the pieces of toast land the same
way. In other words, p is the probability of the event that at least 7 pieces land right-side up,
or at least 7 pieces land upside down, when dropping from an unbiased rig.

(a) As a warmup, compute the exact probability that if we flip a fair coin 10 times, we see
0, 1, 2, 3, 7, 8, 9, or 10 heads.

(b) Now, back to the Mythbusters. With p defined as above, calculate p exactly.

(c) Use p to decide whether the rig appears biased, using the following rules:

• If p > 0.05, conclude that we cannot rule out the possibility that the rig is unbiased.
The rig might be perfectly good as it is.
(The intuition is: Oh man, that totally could’ve happened by chance.)

• If p≤ 0.05, with 95% confidence we can conclude that the rig appears to be biased.
(Sure, it’s possible that this rule could lead us astray. Even if our calculations show
p ≤ 0.05, it’s in principle possible that the rig is unbiased and the observations
were just a big coincidence. However, this would require assuming that an event
of probability 0.05 or less happened, which is by definition pretty rare. Put another
way, if we conclude that the rig is biased whenever p ≤ 0.05, then we’ll wrongly
throw away a perfectly good rig at most 5% of the time. This seems good enough.)

To put it another way, this decision rule gives us a way to test the hypothesis that the rig
is unbiased: if p ≤ 0.05, we reject the hypothesis (with 95% confidence), otherwise if
p > 0.05 we are unable to reject it (at 95% confidence level).
Using your value of p and this decision rule, decide whether Adam was right to conclude
that his first rig was biased, or whether he jumped to conclusions too quickly.

1Season 3, episode 4, air date: March 9, 2005.
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3. Law of Large Numbers
Recall that the Law of Large Numbers holds if, for every ε > 0,

lim
n→∞

Pr[
∣∣1

nSn−E(1
nSn)

∣∣> ε] = 0.

In class, we saw that the Law of Large Numbers holds for Sn = X1 + · · ·+Xn, where the Xi’s
are i.i.d. random variables. This problem explores if the Law of Large Numbers holds under
other circumstances.

Packets are sent from a source to a destination node over the Internet. Each packet is sent
on a certain route, and the routes are disjoint. Each route has a failure probability of p and
different routes fail independently. If a route fails, all packets sent along that route are lost.
You can assume that the routing protocol has no knowledge of which route fails.

For each of the following routing protocols, determine whether the Law of Large Numbers
holds when Sn is defined as the total number of received packets out of n packets sent. Answer
Yes if the Law of Large Number holds, or No if not, and give a brief justification of your
answer. (Whenever convenient, you can assume that n is even.)

(a) Yes or No: Each packet is sent on a completely different route.

(b) Yes or No: The packets are split into n/2 pairs of packets. Each pair is sent together on
its own route (i.e., different pairs are sent on different routes).

(c) Yes or No: The packets are split into 2 groups of n/2 packets. All the packets in each
group are sent on the same route, and the two groups are sent on different routes.

(d) Yes or No: All the packets are sent on one route.

4. Erasures, Bounds, and Probabilities
Alice is sending 1000 bits to Bob. The probability that a bit gets erased is p, and the erasure
of each bit is independent of the others.

Alice is using a scheme that can tolerate upto one-fifth of the bits being erased. That is, as
long as Bob receives at least 801 of the 1000 bits correctly, he can decode Alice’s message.

In other words, Bob becomes unable to decode Alice’s message only if 200 or more bits
are erased. We call this a “communication breakdown”, and we want the probability of a
communication breakdown to be at most 10−6.

(a) Use Markov’s inequality to upper bound p such that the probability of a communications
breakdown is at most 10−6.

(b) Use Chebyshev’s inequality to upper bound p such that the probability of a communi-
cations breakdown is at most 10−6.

5. Binomial CLT (Optional)
In this question we will explicitly see why the central limit theorem holds for the binomial
distribution as the number of coin tosses grows.

Let X be the random variable showing the total number of heads in n independent coin tosses.
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(a) Compute the mean and variance of X . Show that µ = E[X ] = n/2 and σ2 = Var[X ] =

n/4.

(b) Prove that Pr[X = k] =
(n

k

)
/2n.

(c) Show by using Stirling’s formula that Pr[X = k]' 1√
2π
( n

2k)
k( n

2(n−k))
n−k
√

n
k(n−k) .

In general we expect 2k and 2(n− k) to be close to n for the probability to be non-
negligible. When this happens we expect

√
n

k(n−k) to be close to
√

n
(n/2)×(n/2) = 2/

√
n.

So replace that part of the formula by 2/
√

n.

(d) In order to normalize X , we need to subtract the mean, and divide by the standard
deviation. Let Y = (X−µ)/σ be the normalized version of X . Note that Y is a discrete
random variable. Determine the set of values that Y can take. What is the distance d
between two consecutive values?

(e) Let X = k correspond to the event Y = t. Then X ∈ [k− 0.5,k + 0.5] corresponds to
Y ∈ [t − d/2, t + d/2]. For conceptual simplicity, it is reasonable to assume that the
mass at point t is distributed uniformly on the interval [t−d/2, t+d/2]. We can capture
this with the idea of a “probability density” and say that the probability density on this
interval is just Pr[Y = t]/d = Pr[X = k]/d.

Compute k as a function of t. Then substitute that for k in the approximation you have
from part 5c to find an approximation for Pr[Y = t]/d. Show that the end result is
equivalent to

1√
2π

(
(1+

t√
n
)

1+ t√
n (1− t√

n
)

1− t√
n

)−n/2

(f) As you can see, we have expressions of the form (1+ x)1+x in our approximation. To
simplify them, write (1+x)1+x as exp(ln(1+x)(1+x)) and then replace ln(1+x)(1+x)
by its Taylor series.
The Taylor series up to the x2 term is ln(1+x)(1+x)' x+x2/2+ . . . (feel free to verify
this by hand). Use this to simplify the approximation from the last part. In the end you
should get the familiar formula that appears inside the CLT:

1√
2π

e−t2/2

(The CLT is essentially taking a sum with lots of tiny slices and approximating it by an
integral of this function. Because the slices are tiny, dropping all the higher-order terms
in the Taylor expansion is justified.)
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