1. Repeated Squaring Compute $3^{383}(\bmod 7)$. (Via repeated squaring!)

2. Modular Potpourri

(a) Evaluate $4^{96}(\bmod 5)$
(b) Prove or Disprove: There exists some $x \in \mathbb{Z}$ such that $x \equiv 3(\bmod 16)$ and $x \equiv 4(\bmod$ 6).
(c) Prove or Disprove: $2 x \equiv 4(\bmod 12) \Longleftrightarrow x \equiv 2(\bmod 12)$

3. Just a Little Proof

Suppose that p and q are distinct odd primes and a is an integer such that $\operatorname{gcd}(a, p q)=1$. Prove that $a^{(p-1)(q-1)+1} \equiv a(\bmod p q)$.

4. RSA Warm-Up

Consider an RSA scheme modulus $N=p q$, where p and q are prime numbers larger than 3 .
(a) Recall that e must be relatively prime to $p-1$ and $q-1$. Find a condition on p and q such that $e=3$ is a valid exponent.
(b) Now suppose that $p=5, q=17$, and $e=3$. What is the public key?
(c) What is the private key?
(d) Alice wants to send a message $x=10$ to Bob. What is the encrypted message she sends using the public key?
(e) Alice receives the message $y=24$ back from Bob. What equation would she use to decrypt the message?

