1 Virtual Lab 9 Solution: Intro to Randomness (cont.)

1.1 Table of Contents

The number inside parentheses is the number of functions or code blocks you are required to fill out for each question. Always make sure to double check before you submit.

- Introduction
- Part (a): Random Walk (3)
- Part (b): Normalized Random Walk (1)
- Part (c): q-curve (2)
- Part (d): Multiple q-curves (1)
- Part (e): Quartile Values (1)
- Part (f): Quartile Gap (1)
- Part (g): Scale the Gap (2)
- Part (h): Monty Hall (2)

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

In [2]: from __future__ import division # so that you don’t have to worry about float division
 import random
 import math
Introduction

In this week’s lab, we will continue our coin tossing example, but see it from a different perspective. Make sure you review the lab solution from Homework 8 before moving on.

Below, you will find sample implementations for some of the functions from last week’s lab.

In [3]: def count_heads(k):
 """
 Counts the number of heads in num_flips
 """
 return sum([round(random.random()) for _ in range(k)])

In [4]: def count_heads_in_runs(k, n):
 """
 Returns a list of length n, where each element is the number of heads in k flips.
 """
 return [count_heads(k) for _ in range(n)]

In [5]: def scaled_run(k, n):
 """
 Shifts the center of the horizontal axis to the origin by subtracting half the number of tosses from the number of heads
 """
 return [count_heads(k) - k//2 for _ in range(n)]

Part (a): Random Walk

Let’s change gears a little bit from last time. Consider the following visualization of a sequence of coin flips. We start at zero. For every head we get, we add one. For every tail we get, we subtract one.

Hence, a sequence of 1000 coin tosses would be a path that starts at (0,0), and then goes to either (1, 1) or (1, −1), and continues wandering till (1000, y) somewhere. Plot 20 such paths on the same plot based on randomly flipped coins. Each sample path should have 1000 coin tosses.

What do you observe about the paths?

Hint: First, implement the function `rand_one`, which generates 1 and −1 randomly with roughly 50% probability each. Then, implement the `path(n)` function, which returns a list of `n` elements that starts at 0 and every element thereafter is either one more or one less than the previous one. In Python, you can access the last element in a list with the syntax `lst[-1]`.

In [6]: def rand_one():
 """
 Returns -1 roughly one half of a time, and 1 the other half
 YOUR CODE HERE
 """
 return -1 if random.random() < 0.5 else 1

In [7]: # Test your implementation by repeatedly running this code cell.
 # You should see that the value fluctuates between -1 and 1.

 rand_one()

Out[7]: 1
In [8]: def path(n):

 """
 An n-step random walk that starts at 0
 """

 walk = [0]
 for _ in range(1, n):
 walk.append(walk[-1] + rand_one())
 return walk

In [9]: def partA():

 """
 YOUR CODE HERE
 """

 for _ in range(20):
 plt.plot(path(1000))
 plt.title("20 random walks of 1000 coin flips")
 plt.xlabel("k")
 plt.show()

In [10]: partA()

YOUR COMMENTS HERE:
Part (b): Normalized Random Walk
Notice that the histograms you were plotting earlier were effectively looking at vertical slices in this picture and asking how many sample paths were crossing through a particular y coordinate. (If we are looking at
k tosses, then having exactly h heads is the same as this sample path crossing through $(k, h - (k - h)) = (k, 2h - k)$

Now, let’s see what the rescalings we were doing correspond to. The common-set-of-units scaling is what the previous part corresponded to. How would you change the scaling to correspond to the normalized set of units in part (e)? (in this plot, a sample path that consists of all heads should basically be a straight line that stays at the upper-limit — say 1. And a sample path that consists of all tails should be a straight line that stays at the lower limit — say -1).

Give this new scaling (it will depend on k — so it will change the visual shape of a path) and plot 100 sample paths of 1000 coin tosses each.

Comment on what this suggests relative to the earlier plots.

In [11]: def partB():
 """
 YOUR CODE HERE
 """
 for _ in range(100):
 plt.plot([k/(i+1) for i, k in enumerate(path(1000))])
 plt.title("20 normalized random walks of 1000 coin flips")
 plt.xlabel("k")
 plt.show()

In [12]: partB()

YOUR COMMENTS HERE:

Part (c): q-curve

Shifting gears one more time, we are now going to look at the same basic experiment — tossing a fair coin k times — in a third way. Let R for a given run be the ratio of heads.
Fix $k = 1000$ to be the number of coin tosses in a run. Let $m = 1000$ be the number of runs. Plot how often $R \leq q$ as a function of q. The vertical axis should be (in linear scale) the fraction of the m runs in which $R \leq q$, while the horizontal scale should have q ranging from 0 to 1.

Hint: Implement the function `q_curve`, which returns the sorted fraction of heads for each of the m runs. You may find Python’s built-in `sorted` function helpful here.

In [13]: def q_curve(k, m):

 """
 Returns the sorted fraction $R \leq q$ for each of the m runs.
 """

 YOUR CODE HERE

 """

 result = sorted([count_heads(k) / k for _ in xrange(m)])
 first_quartile = result[int(m * 0.25)]
 second_quartile = result[int(m * 0.5)]
 third_quartile = result[int(m * 0.75)]
 return result, first_quartile, second_quartile, third_quartile

In [14]: # YOUR CODE HERE

 # Hint: You can’t use range with floats in Python. In that case,
 # our good old friend np.linspace will help.

 def partC():
 """
 YOUR CODE HERE
 """

 curve, _, _, _ = q_curve(1000, 1000) # don’t care about the quartile values here yet
 y_lim = np.linspace(0, 1, 1000) # don’t care about the quartile values here yet
 plt.plot(curve, y_lim)
 plt.title("Ratio of heads as a function of q")
 plt.xlabel("q")
 plt.ylabel("fraction of m runs where $R \leq q$")
 plt.show()
YOUR COMMENTS HERE:

Part (d): Multiple q-curves

Repeat the previous part for different values of \(k \) and put them all on the same plot. Try \(k = 2, 10, 50, 100, 500, 1000, 10000 \).

What do you see? Is this consonant with what you had observed in earlier plots?

In [16]: \(k_s = [2, 10, 50, 100, 500, 1000, 10000] \)

In [17]: # YOUR CODE HERE

```python
def partD():
    
    y_lim = np.linspace(0, 1, 1000)
    first_Q, second_Q, third_Q = [], [], []

    for k in ks:
        curve, first, second, third = q_curve(k, 1000)
        plt.plot(curve, y_lim, label=str(k))

        # Append the quartile values for later parts
        first_Q.append(first)
        second_Q.append(second)
        third_Q.append(third)

    plt.title("Ratio of heads in k tosses as a function of q")```
### Part (e): Quartile Values

Now, think about rescaling the plots in the previous parts to see if there is something common about this shape. For each $k$, read off the $q$ values where the curves seem to cross hypothetical horizontal lines at 0.25, 0.5, 0.75. Call these the quartile markers. Compute these $qs$ for your experiment. Plot them as a function of $k$. What do you observe?

In [18]: # YOUR CODE HERE

```python
def partE():
 """
 YOUR CODE HERE
 """

 plt.plot(ks, first_Q)
 plt.plot(ks, second_Q)
 plt.plot(ks, third_Q)
 plt.title("q quartile markers as a function of k")
 plt.ylim(0, 1)
 plt.xlabel("k")
```

![Graph showing ratio of heads in k tosses as a function of q for different values of k ranging from 2 to 10000. The graph has a y-axis labeled "fraction of m runs where $R \leq q$" and a x-axis labeled "q". The curves represent different values of k, and quartile markers are visible at 0.25, 0.5, and 0.75.]
YOUR COMMENTS HERE:

## Part (f): Quartile Gap

Notice that the gap between the 0.75 marker and the 0.25 marker is getting smaller as $k$ gets larger. Notice also that the 0.5 marker seems to be sticking around $q = \frac{1}{2}$. As a scientific problem, suppose you wanted to discover how indeed this was scaling with $k$.

Plot the gap between the 0.75 and 0.25 marker as a function of $k$ as a scatter plot. Use all of the traditional axes combinations: linear-linear, linear-log, log-linear, and log-log. Which one seems to offer some insight?

In [32]: gap = [third_Q[i] - first_Q[i] for i in range(len(first_Q))]

```python
def plot_quartile_gap(plot_fn, ks, gap):
 """
 Plot the quartile gap using plot_fn
 """

 plot_fn(ks, gap)
 plt.show()
```

In [33]: def partF():
    """
    YOUR CODE HERE
    """
plt.figure()
plt.title("Linear-linear quartile gap")
plt.xlabel("k")
plt.ylabel("quartile gap")
plot_quartile_gap(plt.plot, ks, gap)

plt.figure()
plt.title("Log-linear quartile gap")
plt.xlabel("log(k)")
plt.ylabel("quartile gap")
plot_quartile_gap(plt.semilogx, ks, gap)

plt.figure()
plt.title("Linear-log quartile gap")
plt.xlabel("k")
plt.ylabel("log(quartile gap)")
plot_quartile_gap(plt.semilogy, ks, gap)

plt.figure()
plt.title("Log-log quartile gap")
plt.xlabel("log(k)")
plt.ylabel("log(quartile gap)")
plot_quartile_gap(plt.loglog, ks, gap)

In [34]: partF()
YOUR COMMENTS HERE:

## Part (g): Scale the Gap

Based on what you observed in the previous set of plots, conjecture a scaling rule that lets you calculate the gap between the 0.75 marker and the 0.25 marker as a function of $k$ for the fair coin tosses case. Explain your derivation in your writeup.

Use this rule to rescale the horizontal axis of the plots from three parts ago. What do you now observe about the curves for different values of $k$? By construction, they should be very close to each other in terms of where they are crossing 0.25, 0.5, 0.75, but what about elsewhere?

**Hint:** Implement the function `q_curve_norm`, which does the same as `q_curve`, except now every point is normalized using your scaling rule. Think about the previous part and how it can help you come up with a scaling rule.

This is a challenging question. Don’t worry if you get stuck here.

In [24]: def q_curve_norm(k, m):

    """
    Does the same as q_curve, except now every point is
    normalized using your scaling rule.
    ""

    YOUR CODE HERE
    ""

    return sorted([(count_heads(k) / k - 0.5) * math.sqrt(k) + 0.5 for _ in xrange(m)])

In [35]: def partG():

    """
    YOUR CODE HERE
    """

11
y_lim = np.linspace(0, 1, 1000)
for k in ks:
    plt.plot(q_curve_norm(k, 1000), y_lim, label=str(k))
plt.xlabel("normalized q")
plt.ylabel("fraction of heads in $m$ runs")
plt.title("Scaled ratio of heads in k tosses as a function of q")
plt.legend(loc=2)
plt.show()
Doors are numbered from 0 up to num_doors-1 (inclusive).

# Randomly choose the door hiding the prize.
winning_door = random.randint(0, num_doors-1)
if verbose:
    print '
Prize is behind door {}'.format(winning_door+1)

# The contestant picks a random door, too.
choice = random.randint(0, num_doors-1)
if verbose:
    print 'Contestant chooses door {}'.format(choice+1)

# The host opens all but two doors.
closed_doors = list(range(num_doors))
while len(closed_doors) > 2:
    # Randomly choose a door to open.
    door_to_remove = random.choice(closed_doors)
    # The host will never open the winning door, or the door
    # chosen by the contestant.
    if door_to_remove == winning_door or door_to_remove == choice:
        continue
    # Remove the door from the list of closed doors.
    closed_doors.remove(door_to_remove)
    if verbose:
        print 'Host opens door {}'.format(door_to_remove+1)

# There are always two doors remaining.
assert len(closed_doors) == 2

# Does the contestant want to switch their choice?
if switch:
    if verbose:
        print 'Contestant switches from door {} '.format(choice+1)
    # There are two closed doors left. The contestant will never
    # choose the same door, so we'll remove that door as a choice.
    available_doors = list(closed_doors) # Make a copy of the list.
    available_doors.remove(choice)
    # Change choice to the only door available.
    choice = available_doors.pop()
    if verbose:
        print 'to {}'.format(choice+1)

# Did the contestant win?
won = (choice == winning_door)
if verbose:
    if won:
        print 'Contestant WON'
    else:
print 'Contestant LOST'
return won

In [28]: # Run this cell to understand the algorithm.
   # Change the parameters (especially the second one).
   monty_hall(3, True, verbose=True)

Prize is behind door 1
Contestant chooses door 2
Host opens door 3
Contestant switches from door 2 to 1
Contestant WON

Out[28]: True

In [29]: num_trials = 10000
   print "Simulating", num_trials, "trials."
   won_switch_count = 0
   # YOUR CODE HERE
   # Please make sure you don’t set ‘verbose’ to True,
   # otherwise the output is going to flood your notebook.
   for i in range(10000):
      if monty_hall(3, True):
         won_switch_count += 1
   # END YOUR CODE HERE
   print 'Switching won {0:5} times out of {1} ({2}% of the time)'.format(
      won_switch_count, num_trials, (won_switch_count / num_trials * 100))
   print 'Staying won {0:5} times out of {1} ({2}% of the time)'.format(
      num_trials-won_switch_count, num_trials, ((num_trials-won_switch_count) / num_trials * 100))

Simulating 10000 trials.
Switching won 6652 times out of 10000 (66.52% of the time)
Staying won 3348 times out of 10000 (33.48% of the time)

PASTE YOUR SIMULATION RESULT FROM ABOVE IN THIS CELL

Congratulations! You are done with Virtual Lab 9.
Don’t forget to convert this notebook to a pdf document, merge it with your written homework, and submit both the pdf and the code (as a zip file) on glookup.

Reminder: late submissions are NOT accepted. If you have any technical difficulty, resolve it early on or use the provided VM.