1 Virtual Lab 10 Solution: Biased Coin

1.1 Table of Contents

- Part (a): Biased Coin Warm-up (0)
- Part (b): Biased Coin Equation (0)
- Part (c): Biased Coin’s Heads (3)
- Part (d): Number of Heads in Many Trials (2)
- Part (e): \(S_k / k\) (1)
- Part (f): Normalization Redux (1)
- Part (g): Histogram Normalization (1)
- Part (h): Varying the Bias (1)
- Part (i): Log Gap (2)
- Part (j): Standard Deviation (1)
- Part (k): Normalized q-curve Redux (1)
- Part (l): \(n\) choose \(k\) (2)

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib
In this week’s lab, we will continue to explore the ideas behind coin tosses. Denote p as the probability of tossing a head, and $1 - p$ as the probability of tossing a tail. In the last two labs, p was 0.5, since we were exploring fair coin tosses. Now assume p can be any number such that $0 \leq p \leq 1$. As before, let k denote the total number of coin tosses.

At an abstract level, most of what this lab is about is doing the previous labs again, except that now the coin is biased. One new concept is introduced: we now need to understand how the bias of the coin affects the shapes of curves that emerge.

This lab might initially look long and daunting, but we are essentially redoing the previous two labs again. Do not worry about the length.

Part (a): Biased Coin Warm-up

Consider $p = 0.7, \bar{p} = 1 - p = 0.3$. If you plotted a histogram for the number of heads and tails for any number of coin tosses k, what would you expect to see that is different from the fair coin toss?

YOUR ANSWER HERE:

Part (b): Biased Coin Equation

If I tossed 100 coins, approximately how many heads should I get? Building on this, can you come up with an equation using k, p, \bar{p} that approximately describes how many heads and tails you expect to see for any case?

YOUR ANSWER HERE:

Part (c): Biased Coin’s Heads

Use a random number generator to sample a sequence of coin tosses with $p = 0.7, \bar{p} = 0.3$. Plot a bar chart for each $k = 10, 100, 1000, 4000$. Is this what you expected from parts (a) and (b)? How well does your equation match for $k = 10$? For $k = 4000$?

Hint: Implement the functions `biased_coin`, which simulates a biased coin flip with $Pr(\text{Head}) = p$, and `run_trial`, which returns the number of heads in k tosses of a biased coin with probability p of getting heads. They should be very similar to the ones you implemented previously for the fair coin.

In [3]: `def biased_coin(p):
 ""
 Creates a biased coin with $p(\text{Head}) = p$
 Returns True if heads and False otherwise.
 ""
 assert p >= 0 and p <= 1, "Wrong biased coin probability"
 return random.random() <= p

In [4]: `def run_trial(p, k):
 ""
 Runs a trial of k tosses of a biased coin (w.p. p of heads)
 and returns number of heads.
 ""
 return sum([biased_coin(p) for _ in xrange(k)])

In [5]: `def partC(p=0.7, kranges=[10, 100, 1000, 4000]):
 ""
 Part (c) code`
print 'Question 2 part (c):'
print 'Probability of head: %f' % p
for k in kranges:
 heads = run_trial(p, k)
 print 'Number of tosses: %i' % k
 print '	Heads: %i, Tails: %i, H/(H+T): %f' % (heads, k - heads, heads * 1.0 / k)

YOUR CODE HERE
plt.bar([0, 1], [heads, k - heads])
plt.xticks([0.4, 1.4], ['Heads', 'Tails'])
plt.ylabel('Frequency')
plt.title('k = %i, p = %.1f' % (k, p))
plt.show()

In [6]: partC()

Question 2 part (c):
Probability of head: 0.700000
Number of tosses: 10
 Heads: 7, Tails: 3, H/(H+T): 0.700000

Number of tosses: 100
 Heads: 72, Tails: 28, H/(H+T): 0.720000
Number of tosses: 1000
Heads: 699, Tails: 301, H/(H+T): 0.699000

Number of tosses: 1000
Heads: 699, Tails: 301, H/(H+T): 0.699000
YOUR COMMENTS HERE:

Part (d): Number of Heads in Many Trials

From the previous parts, you've counted the number of heads and tails for only one trial. Now fix k to be 1000. Let S_k be the total number of heads in a trial with k total coin tosses, and let m be the total number of trials.

Plot a histogram of S_k for $m = 1000$ with bin size of 1. Do this again for $k = 10, 100, 4000$.

Hint: Implement the function `run_many_trials`, which returns a list of the number of heads in each trial.

```python
In [7]: def run_many_trials(p, k, m):
    """    Runs m trials of k tosses of a biased coin (w.p. p of heads)    and returns a list of the numbers of heads.    """
    return [run_trial(p, k) for _ in xrange(m)]

In [8]: def partD(p=0.7, kranges=[10,100,1000,4000], m=1000):
    """    Code for part (d)    """
    print 'Question 2 part (d):'
    print 'Probability of head: %f' % p
    bin_width = 1
```
for k in kranges:
 results = run_many_trials(p, k, m)
 print 'Number of tosses: %i' % k
 print 'Number of trials: %i' % m
 # YOUR CODE HERE
 plt.hist(results, bins=xrange(min(results), max(results)+bin_width*2, bin_width), align='mid',
 label='Frequency')
 plt.ylabel('Frequency')
 plt.xlabel('Number of heads')
 plt.title('k = %i, p = %.1f' % (k, p))
 plt.show()

In [9]: partD()

Question 2 part (d):
Probability of head: 0.700000
Number of tosses: 10
Number of trials: 1000

![Histogram of coin toss results for k=10, p=0.7]
Number of tosses: 1000
Number of trials: 1000

$k = 1000, p = 0.7$
Part (e): S_k / k

Repeat the previous part, but instead plot the histograms of S_k / k with bin size of 0.01. Make sure to plot the histograms in the same figure (so only one plot) for different values of k. How are the histograms different as k increases? Comment on what you are observing.

Hint: You can use the argument `histtype='barstacked'` when calling `plt.hist` to stack the bars on top of each other.

```
In [10]: def partE(p=0.7, kranges=[10,100,1000,4000], m=1000):
    """
    Code for part (e)
    """
    print 'Question 2 part (e):'
    print 'Probability of head: %f' % p
    bin_width = 0.01

    # YOUR CODE HERE
    results = {}
    for k in kranges:
        results[k] = [Sk*1.0/k for Sk in run_many_trials(p, k, m)]
        plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k])+bin_width*2, bin_width),
                 label=str(k), histtype='barstacked')
```
Question 2 part (e):
Probability of head: 0.700000

YOUR COMMENTS HERE:

Part (f): Normalization Redux

In last week's lab, you discovered a very interesting normalization by \sqrt{k} that seemed to make certain curves fall right on top of each other. Let's see if that still works.

Redo the plot you did in part (g) of last week's lab, except for our biased coin and the k values you have explored above. Center the horizontal axis of the plot to be around 0.

In [12]: def partF(p=0.7, kranges=[10,100,1000,4000], m=1000):

 """Code for part (f)"
 """

 print 'Question 2 part (f):'
 print 'Probability of head: %f' % p
 # YOUR CODE HERE
results = {}
for k in kranges:
 results[k] = [(Sk*1.0/k-p)*math.sqrt(k) for Sk in run_many_trials(p, k, m)]
 results[k].sort()
plt.plot(results[k], xrange(1,m+1), label=str(k))

END YOUR CODE HERE
plt.legend()
plt.ylabel('Frequency')
plt.xlabel('Normalized and centered fraction of heads')
plt.xlim(-2.0,2.0)
plt.title('k = %s, p = %.1f' % (str(kranges), p))
plt.show()
Code for part (g)

```python
print 'Question 2 part (g):'
print 'Probability of head: %f' % p
results = {}
for bin_width in bin_widths:
    plt.figure()
    # YOUR CODE HERE
    for k in kranges:
        results[k] = [(Sk - k * p) / math.sqrt(k) for Sk in run_many_trials(p, k, m)]
        plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k]) + bin_width*2, bin_width),
        align='mid', label=str(k), histtype='barstacked')
    # END YOUR CODE HERE
plt.legend()
plt.ylabel('Frequency')
plt.xlabel('Normalized and centered fraction of heads')
plt.xlim(-2.0, 2.0)
plt.title('k = %s, p = %.1f, bin size = %s' % (str(kranges), p, bin_width))
plt.show()
```

In [15]: partG()

Question 2 part (g):
Probability of head: 0.700000
Part (h): Varying the Bias

Now, let's see what the effect is of varying the bias of the coin. Repeat the previous two parts for $p = 0.1, 0.3, 0.5, 0.9$. You can assume the bin size is 0.1. You should have 4 pairs of plots.

Make sure that all of these are plotted on the same scale as the previous parts. What do you observe? Which p seem more variable even after this \sqrt{k} normalization? Less variable?

```python
In [16]: def partH(pranges=[0.1, 0.3, 0.5, 0.9], kranges=[10, 100, 1000, 4000], m=1000):
    
    """Code for part (g)"
    """
    print 'Question 2 part (h): (redo (f) and (g) for different p)'
    
    # YOUR CODE HERE
    # Make sure to reuse your code wisely...
    for p in pranges:
        partF(p, kranges, m)
        partG(p, kranges, m, bin_widths=[0.1])

In [17]: partH()
```

Question 2 part (h): (redo (f) and (g) for different p)
Question 2 part (f):
Probability of head: 0.100000
Question 2 part (g):
Probability of head: 0.100000
Question 2 part (f):
Probability of head: 0.300000

Question 2 part (g):
Probability of head: 0.300000
Question 2 part (f):
Probability of head: 0.500000
Question 2 part (g):
Probability of head: 0.500000

Question 2 part (f):
Probability of head: 0.900000
Question 2 part (g):
Probability of head: 0.900000
Part (i): Log Gap

Based on what you observe in the previous pattern, you decide to try and hunt out the actual dependence on the shape by looking at appropriate plots. As you did in part (f) of last week’s lab, plot the Log of the gap between the 0.75 and 0.25 quartiles against \(\ln p + \ln(1-p) \) in a scatter plot for \(k = 4000 \). (For this, you could also just plot the gap against \(p(1-p) \) on a Log-Log plot.) What do you observe?

\textit{Hint}: Implement the function \texttt{calculate_quartile_gap}, which takes a list containing the number of heads (the return value of \texttt{run_many_trials}) and calculates the gap between the first and third quartiles. Also, you can plot a scatter plot with \texttt{plt.scatter()}.

In [18]: def calculate_quartile_gap(results):
 ""
 Calculates the gap between the first and third quartiles
 ""

 results.sort()
 n = len(results)
 q1 = int(round(0.25*n))
 q3 = int(round(0.75*n))
 return results[q3]-results[q1]

In [34]: def partI(pranges=[0.1,0.3,0.5,0.7,0.9], k=4000, m=1000):
 ""
 Code for part (i)
 ""

 print 'Question 2 part (i)'
 points = []
 for p in pranges:
 print ('Calculating for p = %.1f'\p)
 qgap = calculate_quartile_gap(run_many_trials(p, k, m))
 points.append((math.log(qgap), math.log(p*(1-p))))
 plt.scatter([pt[0] for pt in points], [pt[1] for pt in points])
 plt.ylabel('$\log(p(1-p))$')
 plt.xlabel('log(quartile gap between 75% and 25%)')
 plt.title('Log of the gap between the 0.75 and 0.25 quartiles against $\ln p + \ln(1-p)$')
 plt.show()

In [35]: partI()

Question 2 part (i)
Calculating for p = 0.1
Calculating for p = 0.3
Calculating for p = 0.5
Calculating for p = 0.7
Calculating for p = 0.9
YOUR COMMENTS HERE:

Part (j): Standard Deviation

This suggests another normalization. We call \(\sqrt{p(1-p)} \) the “standard deviation” for a 0-1 coin toss with probability \(p \) of being 1.

Plot a histogram of \(\frac{S_k - kp}{\sqrt{k}\sqrt{p(1-p)}} \) for \(k = 1000 \) with bin size of 0.1. Do this again for \(k = 10, 100, 4000 \) and for \(p = 0.1, 0.3, 0.5, 0.7, 0.9 \) as before. You should have one plot for each value of \(p \), so there should be 5 plots in total.

What do you observe?

In [21]: def partJ(pranges=[0.1,0.3,0.5,0.7,0.9], kranges=[10,100,1000,4000], m=1000):

 Code for Q2 part (j)

 print 'Question 2 part (j):'
 bin_width = 0.1

 for p in pranges:
 print ('Probability of head p = %.1f' % p)

 # YOUR CODE HERE
 std = math.sqrt(p*(1-p))
 results = {}
 for k in kranges:
 results[k] = [(Sk - kp)/(math.sqrt(k)*std) for Sk in run_many_trials(p, k, m)]
 plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k])+bin_width*2, bin_width), label=str(k), histtype='barstacked')

 # END YOUR CODE HERE
plt.legend()
plt.ylabel('Frequency')
plt.xlabel('Normalized and centered fraction of heads')
plt.title('k = %s, p = %.1f' % (str(kranges), p))
plt.show()

In [22]: partJ()

Question 2 part (j):
Probability of head p = 0.1

Probability of head p = 0.3
Probability of head $p = 0.5$
Probability of head $p = 0.7$

![Histogram for $p = 0.7$](image)

Probability of head $p = 0.9$

![Histogram for $p = 0.9$](image)
Part (k): Normalized q-curve Redux

Use the same normalization as the previous part and make the cliff-face plots corresponding to part (d) of last week’s lab. To be precise, look at the range $d = -3$ to $d = +3$ and plot how often (out of the m runs — as a fraction between 0 and 1) $\frac{S_k - kp}{\sqrt{k(1-p)}}$ is less than d.

This should be an increasing curve. Here, put all the different p plots together but have three different plots for $k = 100, 1000, 4000$. (You already know from earlier plots that the different k’s track each other.)

```python
In [23]: def partK(pranges=[0.1, 0.3, 0.5, 0.7, 0.9], kranges=[100, 1000, 4000], m=1000):
   
   """
   Code for Q2 part (k)
   """
   print 'Question 2 part (k):'
   for k in kranges:
       plt.clf()
       results = {}
       print ('Number of trials k = %i' % k)
       for p in pranges:
           print ('Probability of head p = %.' % p)
           std = math.sqrt(p*(1-p))
           results[p] = [(Sk - k*p)/(math.sqrt(k)*std) for Sk in run_many_trials(p, k, m)]
           results[p].sort()
           plt.plot(results[p], np.linspace(0, 1, m), label=str(p))
       plt.legend()
       plt.ylabel('Frequency')
       plt.xlabel('Normalized and centered fraction of heads')
       plt.title('k = %i, p = %s' % (k, str(pranges)))
       plt.show()
```

In [24]: partK()

Question 2 part (k):

- Number of trials $k = 100$
- Probability of head $p = 0.1$
- Probability of head $p = 0.3$
- Probability of head $p = 0.5$
- Probability of head $p = 0.7$
- Probability of head $p = 0.9$
Number of trials $k = 1000$
Probability of head $p = 0.1$
Probability of head $p = 0.3$
Probability of head $p = 0.5$
Probability of head $p = 0.7$
Probability of head $p = 0.9$
Number of trials $k = 4000$
Probability of head $p = 0.1$
Probability of head $p = 0.3$
Probability of head $p = 0.5$
Probability of head $p = 0.7$
Probability of head $p = 0.9$
Part (l): n choose k

Lastly, we would like to explore a function that defines how many ways you can choose k distinct objects out of n possible objects. This is written as $\binom{n}{k}$ and is read aloud as “n choose k”. We define $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

For example, $\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5\cdot4\cdot3\cdot2\cdot1}{3\cdot2\cdot1} = \frac{120}{12} = 10$. We wish to explore this function. Plot the value $\binom{50}{k}$ on the y-axis and k on the x-axis for $0 \leq k \leq 50$.

Does this constantly grow as k gets larger? What does the shape of the graph remind you of?

Hint: Implement the function $\text{choose}(n, k)$ using `math.factorial`.

```python
# Part (l): $n$ choose $k$

In [25]: def choose(n, k):
   
   #"""
   Computes n choose k
   #"""
   
   assert n >= 0 and k >= 0 and n >= k, "Incorrect parameters"

   # YOUR CODE HERE
   return math.factorial(n)/(math.factorial(k)*math.factorial(n-k))

Test your implementation below. Both tests should print True if your implementation is correct.

In [26]: choose(5, 3) == 10
Out[26]: True

In [27]: choose(17, 1) == 17
Out[27]: True
```
In [28]: def partL(n=50):
 """
 Code for Q2 part (l)
 YOUR CODE HERE
 """
 plt.plot(range(0,n+1), [choose(n, k) for k in xrange(0, n+1)])
 plt.xlabel('k')
 plt.ylabel('n choose k')
 plt.title('n = %i' % n)
 plt.show()

In [29]: partL()

YOUR COMMENTS HERE:
Congratulations! You are done with Virtual Lab 10.
Don’t forget to convert this notebook to a pdf document, merge it with your written homework, and submit both the pdf and the code (as a zip file) on glookup.
Reminder: late submissions are NOT accepted. If you have any technical difficulty, resolve it early on or use the provided VM.