
CS61C Summer 2018 Discussion 3 – RISC-V

1 RISC-V with Arrays and Lists

Comment each snippet with what the snippet does. Assume that there is an array, int arr[6] = {3, 1, 4,

1, 5, 9}, which is starts at memory address 0xBFFFFF00, and a linked list struct (as defined below), struct
ll* lst;, whose first element is located at address 0xABCD0000. s0 then contains arr’s address, 0xBFFFFF00,
and s1 contains lst’s address, 0xABCD0000. You may assume integers and pointers are 4 bytes and that structs
are tightly packed.

struct ll {

int val;

struct ll* next;

}

1. lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

2. loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

3. add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:
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2 RISC-V Instruction Formats

2.1 Overview

Instructions in RISC-V can be turned into binary numbers that the machine actually reads. There are different
formats to the instructions, based on what information is need. Each of the fields above is filled in with binary

that represents the information. Each of the registers takes a 5 bit number that is the numeric name of the
register (i.e. zero = 0, ra = 1, s1 = 9). See your reference card to know which register corresponds to which
number.
I type instructions fill the immediate into the code. These numbers are signed 12 bit numbers.

2.2 Exercises

1. Expand addi s0 t0 -1

2. Expand lw s4 5(sp)

3. Write the format name of the following instructions:

(a) jal

(b) lw

(c) beq

(d) add

(e) jalr

(f) sb

(g) lui
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3 Translating between C and RISC-V

Translate between the C and RISC-V code. You may want to use the RISC-V Green Card as a reference.
We show you how the different variables map to registers – you don’t have to worry about the stack or any
memory-related issues.

C RISC-V

// Nth_Fibonacci(n):

// s0 -> n, s1 -> fib

// t0 -> i, t1 -> j

// Assume fib, i, j are already these values

int fib = 1, i = 1, j = 1;

if (n==0) return 0;

else if (n==1) return 1;

n -= 2;

while (n != 0) {

fib = i + j;

j = i;

i = fib;

n--;

}

return fib;

4 RISC-V Calling Conventions

1. How do we pass arguments into functions?

2. How are values returned by functions?

3. What is sp and how should it be used in the context of RISC-V functions?

4. Which values need to saved before using jal?

5. Which values need to be restored before using jalr to return from a function?

3


