1 Logic Gates

1. Label the following logic gates:

2. Convert the following to boolean expressions:

 (a) NAND
 (b) XOR
 (c) XNOR

3. Create an AND gate using only NAND gates.

4. How many different two-input logic gates can there be? How many n-input logic gates?

2 State

1. Fill out the timing diagram for the circuit below:

 IN | D | Q | s0 | s1 | D | Q | -- Out
 +--^-+ +--^-+ +--^-+
 | | |
 CLK --+----------------+

 clk
 in
 s0
 s1
 out
2. Fill out the timing diagram for the circuit below:

3. **Boolean Logic**

- \(A + \bar{A} = 1 \)
- \(1 + A = 1 \)
- \(A + AB = A \)
- \(0B = 0 \)
- \(B\bar{B} = 0 \)
- \(A + \bar{A}B = A + B \)

1. Minimize the following boolean expressions:

 (a) Standard: \((A + B)(A + \bar{B})C\)

 (b) Grouping & Extra Terms: \(\bar{A}\bar{B}\bar{C} + \bar{A}BC + AB\bar{C} + A\bar{B}\bar{C} + ABC + A\bar{B}C\)

 (c) DeMorgan’s: \(\overline{A(BC + \overline{BC})}\)