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Review of Last Lecture

Synchronous Digital Systems
— Pulse of a Clock controls flow of information
— All signals are seen as eitherOor 1

Hardware systems are constructed from Stateless
Combinational Logic and Stateful “Memory”
Logic (registers)

Combinational Logic: equivalent circuit diagrams,
truth tables, and Boolean expressions

— Boolean Algebra allows minimization of gates
State registers implemented from Flip-flops

7/25/2013 Summer 2013 -- Lecture #19



Dealing with Waveform Diagrams

e Easiest to start with CLK on top
— Solve signal by signal, from inputs to outputs

— Can only draw the waveform for a signal if all of its
input waveforms are drawn

e When does a signal update?
— A state element updates based on CLK triggers

— A combinational element updates ANY time ANY
of its inputs changes
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Example: T=10ns. t., =t =0. tyioq=1ns. e

t,rop = 1 ns for all gates. Each “tick” below is 1 ns.

Solve for the waveform of the output Y.

CLK

< 0O W > x




Hardware Design Hierarchy

system

/\

datapath control

coae .
registers multiplexer comparator

Today register logic

e

switching
networks

combinational
logic

state
reqgisters
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Agenda

e State Elements Continued
e Administrivia

e Logisim Introduction

* Finite State Machines
 Multiplexers

 ALU Design
— Adder/Subtracter
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Model for Synchronous Systems

clock _JT LI | jnput

| 1

............................

...............................

¥ output
* Collection of Combinational Logic blocks separated by

registers
— Feedback is optional depending on application

* Clock (CLK): square wave that synchronizes the system
— Clock signal connects only to clock input of registers

* Register: several bits of state that samples input on
rising edge of CLK
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| Accumulator Revisited
- Sl % ...Again
Lo

reset signal shown
_+ /

—y * |n practice X might not arrive to the

1SL adder at the same time as S, ;
el — RQ%- %“C‘—K e S.temporarily is wrong, but register
‘ always captures correct value
Se-
_ _ * In good circuits, instability never
happens around rising edge of clk
I L . ~
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Register Timing Terms (Review)

o Setup Time: how long the input must be
stable before the CLK trigger for proper input
read

* Hold Time: how long the input must be stable
after the CLK trigger for proper input read

o “CLK-to-Q” Delay: how long it takes the
output to change, measured from the CLK
trigger
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Where Does Timing Come From?

e Example D flip-flop implementation:

D

°Q

D
E

e Changing the D signal around the time E (CLK)
changes can cause unexpected behavior
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Maximum Clock Frequency

e What is the max frequency of this circuit?

— Limited by how much time needed to get correct
Next State to Register

Inputs |

—>

Combinational
Logic

| Next State +

Outeuts
Max Delay = Setup Time

‘> Register

Current StateI

7/25/2013

+ CLK-to-Q Delay

Max Freq = 1/Max Delay
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The Critical Path

 The critical path is the longest delay between
any two registers in a circuit

 The clock period must be longer than this
critical path, or the signal will not propagate
properly to that next register

V= |

COs Critical Path =
J CL Delay 1
v . CC \; v + CL Delay 2
2 — ot P + CL Delay 3
0Q -~ [, + Adder Delay
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Pipelining and Clock Frequency (1/2)

e Clock period limited by propagation delay of adder
and shifter

— Add an extra register to reduce the critical path!

t 4 -
[ register 4— Timing:
{ =—— iw\>o‘\’5 b W
S oo
mputs j (O 1 [ L (+2)
¥ < | ; o
\’ Shibter '8 | #L (0) 1 (C41)
e B . — add /shigt prop, delay
reg st 4 | ) . o L
f Ri_, R B (0 ) G
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Pipelining and Clock Frequency (2/2)

e Extra register allows higher clock freq (more outputs per sec)

e However, takes two (shorter) clock cycles to produce first
output (higher latency for initial output)

(I e LTI

reql | register 4

j ‘V‘?‘ﬁg i uts Jm N ENEE .

v— |+ Adder delay

PP S JUED N IED I @

reg2 | register 4 + setup time—# g— + CLK-to-Q delay
.{ e G =] Se R IEN R EN S
w.\er | | v—+ Shlftér delayi
T = R R i j (Lq &uﬂ Ly
@3 | (egicter + setup tlme—'f‘v—+ CLK-to-Q delay
) ¢ Ri- R | | I ] (41 f@*zx
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Pipelining Basics

By adding more registers, break path into shorter
“stages”

— Aim is to reduce critical path

— Signals take an additional clock cycle to propagate
through each stage

 New critical path must be calculated
— Affected by placement of new pipelining registers
— Faster clock rate = higher throughput (outputs)
— More stages = higher startup latency

e Pipelining tends to improve performance
— More on this (application to CPUs) next week

7/25/2013 Summer 2013 -- Lecture #19 15



(af

EECS

Question: Want to run on 1 GHz processor.
tga = 100 ps. t,,: =200 ps. Ty = thow = 20 PS.

What is the maximum t, ;. , We can use?

— output!

(A)
(B) 750 ps
(C)
(D) 700 ps

16




Agenda

e Administrivia
e Logisim Introduction
* Finite State Machines
 Multiplexers

 ALU Design
— Adder/Subtracter
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Administrivia

e Midterm re-grade requests due today

— We will re-grade the entire test
* Project 2 Part 2 will be posted today
e HWS5 posted today, due Thu Aug. 1
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Agenda

e Logisim Introduction
e Finite State Machines
 Multiplexers

 ALU Design
— Adder/Subtracter
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Logisim

 Open-source (i.e. free!) “graphical tool for
designing and simulating logic circuits”
— Runs on Java on any computer

— Download to your home computer via class login
or the Logisim website (we are using version 2.7.1)

 No programming involved

— Unlike Verilog, which is a hardware description
language (HDL)

— Click and drag; still has its share of annoying quirks
e http://ozark.hendrix.edu/~burch/logisim/




Gates in Logisim

B Js Gates —
. [>e NOT Gate
-~ [> Buffer

- D anpGate

D oraxe | Types of
D nanocate Gates

. - T>® NOR Gate
- D xOrRGate
- Pr XNOR Gate _
w [2| Odd Parity

; Even Parity

- [» Controlled Buffer
“ [ Controlled Inverter

e Click gate type, click to place

— Can set options before placing or
select gate later to change

|, Plexers
|, Arithmetic . s * o ® = ® ® 8 @8 @
. Memory Options : = 3 &
|, Input/Output
"), Base 1 4
S
Fadng East . § & o s e« ® @« »
Data Bits 1 <€<—— bus width n / o
Gate Size Medium L
Number Of Inputs 5 e # inputs \ .
Output Value 0/1
Label Medium <—— labeling not necessary,
Label Font SansSerif Plain 12
ke 150 = but can help
Negate 2 No
Negate 3 No
Negate 4 No
Negate 5 (Bottom) No
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Registers in Logisim

e Flip-flops and Registers in “Memory” folder

e 8-bit accumulator:

- pooooooi

8-bit Input

- 0000011
8-bit Output

Enable|®
When 0, clock triggers

~are ineffective

7/25/2013

Clock

Clear o
- ‘When 1, pinvalueto - - - - - -
- Dasynchronously '
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Wires in Logisim

e Click and drag on existing port or wire

* Color schemes:
— Gray: unconnected
— Dark Green: low signal (0) @outout
— Light Green: high signal (1) ¢jpodmb— &) 2-bit Output

— Red: error

— Blue: undetermined signal
— Orange: incompatible widths

Inputo | @ g@Error
Inputt [

3-hitInput

[q@ 1-hit Output

(@) 1-bit Output
{€9)1-bit Output

“Splitter” used to adjust bus widths

e Tunnels: all tunnels with same label are

connected

7/25/2013

0.

—(Tunnel |

Tumnel}—@)
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Common Mistakes in Logisim

e Connecting wires together

— Crossing wires vs. connected wires

e Losing track of which input is which
— Mis-wiring a block (e.g. CLK to Enable)
— Grabbing wrong wires off of splitter

* Errors:
1) wire whose value 2) campletely 3) propagated through 4) conflicting S patofbusis . . . .
- “depends onitself ~ unconnected gate some gates - signals - - errored out

I _ RERES o - o _ _ o :
MUX sig1 : no[@}—(sios| - |sivi }rmg -

| o— | sig3 sigb| -
: sig2 I 0-—(9@5 :
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Agenda

e State Elements Continued
e Administrivia

e Logisim Introduction

* Finite State Machines
 Multiplexers

 ALU Design
— Adder/Subtracter
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Finite State Machines (FSMs)

 You may have seen FSMs in other classes

 Function can be represented with a state
transition diagram

 With combinational logic and registers,
any FSM can be implemented
in hardware!

/o JT
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FSM Overview

e An FSM (in this class) is defined by:
— A set of states S (circles)

— An initial state s, (only arrow not between states)

— A transition function that maps from the current
input and current state to the output and the next
state (arrows between states)

e State transitions are controlled by the clock:

— On each clock cycle the machine checks the inputs

and generates a new state (could be same) and
new output
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Example: 3 Ones FSM

 FSM to detect 3 consecutive 1’s in the Input

States: SO, S1, S2
Initial State: SO
Transitions of form:

input/output
A A T I I R A e o ra e )
R Ju S\
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Hardware Implementation of FSM

 Register holds a representation of the FSM’s state
— Must assign a unique bit pattern for each state
— Output is present/current state (PS/CS)
— Input is next state (NS)

e Combinational Logic implements transition function

(state transitions + output) TupoT
o’ v
reg CLK - _ e
+ = | ] L——oumr
> OUTPUT r—
?Veé@ﬂd— C?S) wext 2 TR
Srde oo () s |
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FSM: Combinational Logic

e Read off transitions into Truth Table!
— Inputs: Current State (CS) and Input (In)
— Outputs: Next State (NS) and Output (Out)

CS | In | NS | Out
00| 0 |00 ] O
00| 1 |o1][ O N
0L | 0 |00 | O '{
01| 1 |10 O
10| 0 00| O
10/ 1 Joo | 1
0)

4
 Implement logic for EACH output (2 for NS, 1 for Out

7/25/2013 Summer 2013 -- Lecture #19
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Unspecified Output Values (1/2)

e Our FSM has only 3 states

— 2 entries in truth table are
undefined/unspecified

e Use symbol X’ to mean it can
be eitheraOorl

— Make choice to simplify final
expression

7/25/2013 Summer 2013 -- Lecture #19

CS | In | NS | Out
OO O OO | O
00 1 101 | O
01| 0 OO | O
01 1 10 | O
10| 0 | 00 | O
10 1 | 00 1
11| 0 | XX | X
11 1 | XX | X
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Unspecified Output Values (2/2)

* Let’s find expression for NS,

— Recall: 2-bit output is just a
2-bit bus, which is just 2 wires

* Boolean algebra:
— NS, = CS,’CS,In

Cbls neighbor

— NS, = CS,In
e Karnaugh Map:
— NS, = CS,In

7/25/2013

D

In
0

mmmmm

iffers by 2

CS | In | NS | Out
OO | 0O OO | O
00 1 101 | O
01| 0 OO | O
01 1 10| O
10| 0 | 00 | O
10 1 | 00 1
11 | 0 | XX | X
11 1 | XX | X

CS
o0 01 11

10

0 0 X 0
0

2013 -- Lecture #19
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3 Ones FSM in Hardware

e 2-bit Register needed for state
e CL: NS, =CS4ln, NS, =CS,’CS,'In, Out = CS,In

7/25/2013 Summer 2013 -- Lecture #19
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Agenda

e State Elements Continued
e Administrivia
e Logisim Introduction
* Finite State Machines
e Multiplexers
 ALU Design
— Adder/Subtracter
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Data Multiplexor

e Multiplexor (“MUX”") is a selector

— Place one of multiple inputs onto output (N-to-1)
e Shown below is an n-bit 2-to-1 MUX

— Input S selects between two inputs of n bits each

This input is passed
to output if selector
bits match shown
value
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Implementing a 1-bit 2-to-1 MUX

 Schematic:  Boolean Algebra:
a ¢ = sab—+ sab + sab + sab
C = 5(ab + ab) + s(ab + ab)
b = 5(a(d+b)) + s((@+ a)b)
= 5(a(1) + s((1)d)
| S s a blec — Sa + sb
e TruthTable: "o 0 oo
0 0o 1|0 e Circuit Diagram:
0 1 ol S EREEPRACSEISEINS
0 1 1]1
1 0 o]o
1 0 1]1
1 1 o]o
1 1 1]1
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1-bit 4-to-1 MUX (1/2)
A

e Schematic:

| A
‘Jl 7{* g: S\So

o b C
L
|

€

\

e Truth Table: How many rows? 2°

e Boolean Expression:
e=5,'sya+5s;'sgb +5s,5,c+5,5,d

7/25/2013 Summer 2013 -- Lecture #19
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1-bit 4-to-1 MUX (2/2)

e Can we leverage what we’ve previously built?
— Alternative hierarchical approach:

o —s
b___%lﬂ
l €
)
{
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Subcircuits Example

e Logisim equivalent of procedure or method

---------- - shown here

\

Incomplete wiring

4-to-1 M

— Every project is a hierarchy of subcircuits

- b

U .

7/25/2013

Summer 2013 -- Lecture #19
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7/25/2013

Get To Know Your Instructor

Summer 2013 -- Lecture #19
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Agenda

e State Elements Continued
e Administrivia

e Logisim Introduction

* Finite State Machines

e Multiplexers

 ALU Design
— Adder/Subtracter
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Arithmetic and Logic Unit (ALU)

 Most processors contain a special logic block
called the “Arithmetic and Logic Unit” (ALU)

— We’ll show you an easy one that does ADD, SUB,
bitwise AND, and bitwise OR

e Schematic: A >
t?z 22
— when S=00,R=A+B
when S=01,R=A-B
\ ALV A7%=5 hens=10.R = A AND B
” when S=11, R = A OR B

R

7/25/2013 Summer 2013 -- Lecture #19 42



Simple ALU Schematic

A B
Bzi }3e
' :
Se —1 odd/sulet &C*J ‘ AND ] OR
[ S
O\MQ\O“ JE3) \o \7; S
Notice that 3 values (
are ALWAYS calculated S 1] &
in parallel, but only 1 32

makes it to the Result

K

7/25/2013 Summer 2013 -- Lecture #19 43



Adder/Subtractor: 1-bit LSB Adder

Carry-out bit
a3 ado aj | Q ap by |So €
+ by by by | bg

— e (O O

010 O
1|1 O
0|1 O
1 10 1

So = ag XOR by
c1 = ag AND b
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Adder/Subtractor: 1-bit Adder

Possible

/\carry-in (o a; bz Ci | i Cit1

ag as | a; | Qg O 0 0|0 O

-+ b3 bg b1 b() 0O 0 1)1 0

o Mo | & | & O 1 0|1 0

s a2 Al | =0 0 1 1|0 1

1 0 01 0

Here defining XOR of many inputs to be 1 0 1 0 ‘
when an odd number of inputs are 1 1 0 0
1 1|1

S; = XOR(CLZ‘, bz', Cz')
Ci+1 = MAJ(CL?;, b,,;, Ci) e az-bz- - a;C; -+ biC,,;
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Adder/Subtractor: 1-bit Adder

e Circuit Diagrams:

ay
O~(: ——)\ bt
be --—-—) — S0 ‘T
o —

Co —

S; — XOR(G@, bi, Cz‘)
Cit+1 = MAJ(CL?;, b’ia C?;) — Clu,;bi -+ a;C; -+ bici
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N x 1-bit Adders = N-bit Adder

* Connect CarryOut, , to Carryln, to chain adders:

by\'l Ao - | b‘ a_‘ bO C o
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Two’s Complement Adder/Subtractor

e Subtraction accomplished by adding negated number:
bu-v Ga-y b, 4, bo Qo

A1y Add 1

(flips the bits)

— SUR

;

This signal is only

- high when you
Swn-i Sy So perform subtraction

overflowy  Where did this come from?
7/25/2013 Summer 2013 -- Lecture #19 18




Detecting Overflow

e Unsigned overflow
— On addition, if carry-out from MSB is 1
— On subtraction, if carry-out from MSB is O

e This case is a lot harder to see than you might think

e Signed overflow
1) Overflow from adding “large” positive numbers
2) Overflow from adding “large” negative numbers
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Signed Overflow Examples (4-bit)

 Overflow from two positive numbers:
e 0111 +0111,0111 +0001, 0100 + 0100.
e Carry-out from the 2" MSB (but not MSB)
® pPOS + pPOoS # neg
 Overflow from two negative numbers:
e 1000 + 1000, 1000 + 1111, 1011 +1011.
e Carry-out from the MSB (but not 2"4 MSB)
* neg+ neg # pos

* Expression for signed overflow: C, XOR C,_,

7/25/2013 Summer 2013 -- Lecture #19
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Summary

Critical path constrains clock rate
— Timing constants: setup, hold, and clk-to-q times
— Can adjust with extra registers (pipelining)

Finite State Machines extremely useful
— Can implement systems with Register + CL
Use MUXes to select among input

— S input bits selects one of 2° inputs
— Each input is a bus n-bits wide

Build n-bit adder out of chained 1-bit adders
— Can also do subtraction with additional SUB signal



BONUS SLIDES

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should
be easily readable and the material will be
touched upon in the following lecture.
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Direct-Mapped Cache Internals

* Four words/block, cache size = 1 Ki words
Byte

H 3130 ... 131211 ... 43210
H|t ‘/Offset Data
A A
Tag ~0 3 Block offset
Index
Index Valid Tag < Data (words) >
0
1
2
253
254
255
120
and
| <
32
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4-\Way Set Associative Cache

e 28 =256 sets each with four slots for blocks

3130 ... 131211 ... 210 / Byte offset
I
Tag 22 N
Index
ILdex V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0
1 1 1 1
Slo+0 Slotl: Slot2 Slot3

2 l 2 l 2 l 2 l
253 253 253 253
254 254 254 254
255 255 255 255

S
&
1

e
10,

7
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