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Background: Threads
• A Thread stands for “thread of execution”, it is a 

single stream of instructions
• A program can split, or fork itself into separate threads, 

which can (in theory) execute simultaneously.
•  It has its own registers, PC, etc.
• Threads from the same process operate in the same 

virtual address space
-  switching threads is faster than switching processes!

• Are an easy way to describe/think about parallelism

• A single CPU can execute many threads by 
timeslicing

CPU

Time

Thread0
Thread1
Thread2
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Introduction to Hardware Parallelism

• Given many threads (somehow generated 
by software), how do we implement this in 
hardware?

• “Iron Law” of Processor Performance
Execution Time = (Inst. Count)(CPI)(Cycle Time)
• Hardware Parallelism improves:

•  Instruction Count - If the equation is applied to each 
CPU, each CPU needs to do less

• CPI - If the equation is applied to system as a whole, 
more is done per cycle 

• Cycle Time - Will probably be made worse in process
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Disclaimers

• Please donʼt let todayʼs material  
confuse what you have already 
learned about CPUʼs and pipelining

• When programmer is mentioned 
today, it means whoever is generating 
the assembly code (so it is probably a 
compiler)

• Many of the concepts described today 
are difficult to implement, so if it 
sounds easy, think of possible 
hazards
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Flynnʼs Taxonomy
• Classifications of parallelism types

www.wikipedia.org 

Single Data

Multiple Data

Single Instruction Multiple Instruction
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Superscalar

• Add more functional units or pipelines 
to CPU

• Directly reduces CPI by doing more 
per cycle

• Consider what if we:
• Added another ALU
• Added 2 more read ports to the RegFile
• Added 1 more write port to the RegFile 
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Simple Superscalar MIPS CPU
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• Can now do (up 
to) 2 instructions 
in 1 cycle!
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Simple Superscalar MIPS CPU (cont.)

• Considerations
• ISA now has to be changed
• Forwarding for pipelining now harder

• Limitations
• Programmer must explicitly generate 
parallel code OR require even more 
complex hardware for scheduling

• Improvement only if other instructions 
can fill slots

• Doesnʼt scale well
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Superscalar in Practice

• Performance improvement depends 
on program and programmer being 
able to fully utilize all slots

• Can be parts other than ALU (like load)
• Usefulness will be more apparent 
when combined with other parallel 
techniques

• Other techniques, such as vectored 
data
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Multithreading

• Multithreading is running multiple 
threads through the same hardware

• Could we do Timeslicing better in 
hardware?

• Consider if we gave the OS the 
abstraction of having 4 physical CPUʼs 
that share memory and each executes 
one thread, but we did it all on 1 
physical CPU?
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Static Multithreading Example

ALU

Introduced in 1964
by Seymour
Cray

Pipeline Stage

Appears to 
be 4 CPU’s 
at 1/4 clock
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Static Multithreading Example Analyzed

• Results:
• 4 Threads running in hardware
• Pipeline hazards reduced

-  No more need to forward
-  No control issues
-  Less structural hazards

• Depends on being able to fully generate 4 
threads evenly

-  Example if 1 Thread does 75% of the work
–  Utilization = (% time run)(% work done) 
    = (.25)(.75) + (.75)(.25) = .375
    = 37.5%
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Dynamic Multithreading

• Adds flexibility in choosing time to 
switch thread

• Simultaneous Multithreading (SMT)
• Called Hyperthreading by Intel 
• Run multiple threads at the same time
• Just allocate functional units when 
available

• Superscalar helps with this
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Dynamic Multithreading Example
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•  Put multiple CPUʼs on the same die
•  Why is this better than multiple 

dies?
•  Smaller, Cheaper
•  Closer, so lower inter-processor latency
•  Can share a L2 Cache (complicated)
•  Less power

•  Cost of multicore:
•  Complexity
•  Slower single-thread execution

Multicore
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Two CPUs, two caches, shared DRAM ...
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Write-through caches

View of memory no 
longer “coherent”.

Loads of location 16 
from CPU0 and 
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Multicore Example (IBM Power5)

Core #1

Core #2

Shared
Stuff
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Administrivia
• Absolutely nothing else due! 

• You survived, congratulations…. 
-  Now study for for your final tomorrow!

• Final Exam: Tomorrow, 8/13, 9am-12. 277 Cory 
(this room)

• Final Exam Review: Right after this lecture! 
• Sleep! We wonʼt be answering any questions 

late into the night in an effort to get you guys to 
go to bed early! If you donʼt sleep, you wonʼt do 
well.
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High Level Message

• Everything is changing 
• Old conventional wisdom is out
• We desperately need new approach to 
HW and SW based on parallelism 
since industry has bet its future that 
parallelism works

• Need to create a “watering hole” to 
bring everyone together to quickly find 
that solution

• architects, language designers, 
application experts, numerical analysts, 
algorithm designers, programmers, …
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Conventional Wisdom (CW) in Computer Architecture

1.  Old CW: Power is free, but transistors expensive
•  New CW: Power wall Power expensive, transistors “free” 

•  Can put more transistors on a chip than have power to turn on

2.  Old CW: Multiplies slow, but loads fast
•  New CW: Memory wall Loads slow, multiplies fast 

•  200 clocks to DRAM, but even FP multiplies only 4 clocks

3.  Old CW: More ILP via compiler / architecture innovation 
•  Branch prediction, speculation, Out-of-order execution, VLIW, …

•  New CW: ILP wall Diminishing returns on more ILP
4.  Old CW: 2X CPU Performance every 18 months
•  New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall 
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Uniprocessor Performance (SPECint)

•  VAX          : 25%/year 1978 to 1986 
•  RISC + x86: 52%/year 1986 to 2002 
•  RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson, Computer Architecture: A 
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip 
design: multiple “cores” or 
processors per chip 

3X 
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Need a New Approach

•  Berkeley researchers from many backgrounds met 
between February 2005 and December 2006 to 
discuss parallelism
•  Circuit design, computer architecture, massively parallel 

computing, computer-aided design, embedded hardware 
and software, programming languages, compilers, 
scientific programming, and numerical analysis

•  Krste Asanovic, Ras Bodik, Jim Demmel, John 
Kubiatowicz, Edward Lee, George Necula, Kurt 
Keutzer, Dave Patterson, Koshik Sen, John Shalf, 
Kathy Yelick + others

•  Tried to learn from successes in embedded and 
high performance computing

•  Led to 7 Questions to frame parallel research
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7 Questions for Parallelism
•  Applications:

1. What are the apps? 
2. What are kernels of apps?

•  Hardware:

3. What are HW building blocks? 
4. How to connect them?

•  Programming Model & Systems 
Software:

5. How to describe apps & kernels? 
6. How to program the HW?

•  Evaluation: 

7. How to measure success?

(Inspired by a view of the  
Golden Gate Bridge from Berkeley)  
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• Power limits leading edge chip designs
• Intel Tejas Pentium 4 cancelled due to 
power issues

• Yield on leading edge processes 
dropping dramatically

• IBM quotes yields of 10 – 20% on 8-
processor Cell

• Design/validation leading edge chip is 
becoming unmanageable

• Verification teams > design teams on 
leading edge processors

Hardware Tower:  
What are the problems?
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HW Solution: Small is Beautiful

•  Expect modestly pipelined (5- to 9-stage)  
CPUs, FPUs, vector, Single Inst Multiple Data (SIMD) 
Processing Elements (PEs)
•  Small cores not much slower than large cores

•  Parallel is energy efficient path to performance: P≈V2
•  Lower threshold and supply voltages lowers energy per op

•  Redundant processors can improve chip yield
•  Cisco Metro 188 CPUs + 4 spares;  

Sun Niagara sells 6 or 8 CPUs

•  Small, regular processing elements easier to verify

•  One size fits all? Heterogeneous processors?
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Number of Cores/Socket

•  We need revolution, not evolution

•  Software or architecture alone canʼt fix parallel 
programming problem, need innovations in both

•  “Multicore” 2X cores per generation: 2, 4, 8, … 

•  “Manycore” 100s is highest performance per unit 
area, and per Watt, then 2X per generation:  
64, 128, 256, 512, 1024 …

•  Multicore architectures & Programming Models good 
for 2 to 32 cores wonʼt evolve to Manycore systems 
of 1000ʼs of processors  
⇒ Desperately need HW/SW models that work for 
Manycore or will run out of steam 
(as ILP ran out of steam at 4 instructions)
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1.  ≈ Only companies can build HW, and it takes 
years

2.  Software people donʼt start working hard until 
hardware arrives

•  3 months after HW arrives, SW people list 
everything that must be fixed, then we all 
wait 4 years for next iteration of HW/SW

3.  How get 1000 CPU systems in hands of 
researchers to innovate in timely fashion on 
in algorithms, compilers, languages, OS, 
architectures, … ?

4.  Can avoid waiting years between HW/SW 
iterations?

Measuring Success:  
What are the problems?
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Build Academic Manycore from FPGAs 

•  As ≈ 16 CPUs will fit in Field Programmable Gate Array 
(FPGA), 1000-CPU system from ≈ 64 FPGAs?
•  8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
•  FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

•  HW research community does logic design (“gate 
shareware”) to create out-of-the-box, Manycore 
•  E.g., 1000 processor, standard ISA binary-compatible, 64-bit,  

cache-coherent supercomputer @ ≈ 150 MHz/CPU in 2007
•  RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and 

Washington

•  “Research Accelerator for Multiple Processors” as a 
vehicle to attract many to parallel challenge
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Multiprocessing Watering Hole

•  Killer app: ≈ All CS Research, Advanced Development 
•  RAMP attracts many communities to shared artifact  
⇒ Cross-disciplinary interactions 

•  RAMP as next Standard Research/AD Platform?  
(e.g., VAX/BSD Unix in 1980s) 

Parallel file system 

Flight Data Recorder Transactional Memory 
Fault insertion to check dependability 

Data center in a box 

Internet in a box 

Dataflow language/computer 

Security enhancements 
Router design Compile to FPGA 

Parallel languages 128-bit Floating Point Libraries 
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ParLab Research Overview
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Tessellation: The ParLab OS

•  Resources (cores, memory, 
cache, etc) are divided into 
discrete units which are 
isolated from one another

•  These divisions are able to 
change over time, but with 
time slices (we think) larger 
than what is currently done 
for processes today

•  Performance and resource 
guarantees are associated 
with partitions. This is called 
Quality of Service (QoS)

•  OS written completely from 
scratch. Coding began Jan 09.

•  Key Concept: Space-Time Partitioning
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What I do on Tessellation

•  Remote System Calls (RSCs)
•  System Calls are functions that transfer control to the kernel to perform 

privileged operations
•  Tessellation doesnʼt have Disk / File System support, so we package up 

file related System Calls and send them over some medium (serial / 
Ethernet) to a remote machine for processing and return the result

•  PCI / Ethernet / IOAPIC Support
•  Wrote a basic PCI bus parser, and Ethernet driver. This gives 

Tessellation the ability to perform basic network communication. RSCs 
currently run over this medium

•  Standalone TCP/IP Stack Integration
•  Responsible for integrating a third-party TCP/IP stack into OS as a user 

space library running inside of a partition – the first example of our 
partitioning model

•  Interrupt Routing
•  Wrote the system that allows device interrupts to be routed to specific 

cores or groups of cores. Random side note: AHHHH x86 is ugly! Be 
grateful for MIPS!
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How to get involved

•  Weʼve talked in-depth about a few research projects. The purpose of 
this was to give you a brief overview of some of the great projects 
being worked on here at Cal by undergraduates just like you

•  Iʼm an undergraduate transfer. I sat in the very seats you were in 
Spring 08. I began work on Tessellation by simply asking my CS162 
Professor if he had a project he needed help with

•  How to get involved:
•  Attend lecture and office hours, get to know the instructors
•  Have conversations with professors, ask them what they are 

working on, and if they need help (the answer will likely be yes)
•  Not sure who to talk too? Check out these great resources. 

These programs have lists of projects looking for 
undergraduates. You can get units, and in some cases money!

•  http://research.berkeley.edu/urap/
•  http://coe.berkeley.edu/students/current-undergraduates/student-research/

uro/
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Summary

• Superscalar: More functional units
• Multithread: Multiple threads 
executing on same CPU

• Multicore: Multiple CPUʼs on the same 
die

• The gains from all these parallel 
hardware techniques relies heavily on 
the programmer being able to map 
their task well to multiple threads

• Research projects need your help!
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Reasons for Optimism towards Parallel Revolution this time

•  End of sequential microprocessor/faster clock rates
•  No looming sequential juggernaut to kill parallel revolution

•  SW & HW industries fully committed to parallelism
•  End of lazy Programming Era

•  Mooreʼs Law continues, so soon can put 1000s of simple cores 
on an economical chip

•  Open Source Software movement means that SW stack can 
evolve more quickly than in past

•  RAMP as vehicle to ramp up parallel research  

•  Tessellation as a way to manage and utilize new manycore 
hardware
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Credits

• Thanks to the following people and 
possibly others for these slides:

• Krste Asanovic
• Scott Beamer
• Albert Chae
• Dan Garcia
• John Kubiatowicz
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Up next…..

Review time with Josh and James!


