
CS61CL L15 Parallelism(1) Pearce, Summer 2009 © UCB

Paul Pearce, TA

inst.eecs.berkeley.edu/~cs61c  
CS61CL : Machine Structures 

 Lecture #15 – Parallelism 

 2009-8-12

www.xkcd.com/619

CS61CL L15 Parallelism(2) Pearce, Summer 2009 © UCB

Background: Threads
• A Thread stands for “thread of execution”, it is a

single stream of instructions
• A program can split, or fork itself into separate threads,

which can (in theory) execute simultaneously.
•  It has its own registers, PC, etc.
• Threads from the same process operate in the same

virtual address space
-  switching threads is faster than switching processes!

• Are an easy way to describe/think about parallelism

• A single CPU can execute many threads by
timeslicing

CPU

Time

Thread0
Thread1
Thread2

CS61CL L15 Parallelism(3) Pearce, Summer 2009 © UCB

Introduction to Hardware Parallelism

• Given many threads (somehow generated
by software), how do we implement this in
hardware?

• “Iron Law” of Processor Performance
Execution Time = (Inst. Count)(CPI)(Cycle Time)
• Hardware Parallelism improves:

•  Instruction Count - If the equation is applied to each
CPU, each CPU needs to do less

• CPI - If the equation is applied to system as a whole,
more is done per cycle

• Cycle Time - Will probably be made worse in process

CS61CL L15 Parallelism(4) Pearce, Summer 2009 © UCB

Disclaimers

• Please donʼt let todayʼs material
confuse what you have already
learned about CPUʼs and pipelining

• When programmer is mentioned
today, it means whoever is generating
the assembly code (so it is probably a
compiler)

• Many of the concepts described today
are difficult to implement, so if it
sounds easy, think of possible
hazards

CS61CL L15 Parallelism(5) Pearce, Summer 2009 © UCB

Flynnʼs Taxonomy
• Classifications of parallelism types

www.wikipedia.org

Single Data

Multiple Data

Single Instruction Multiple Instruction

CS61CL L15 Parallelism(6) Pearce, Summer 2009 © UCB

Superscalar

• Add more functional units or pipelines
to CPU

• Directly reduces CPI by doing more
per cycle

• Consider what if we:
• Added another ALU
• Added 2 more read ports to the RegFile
• Added 1 more write port to the RegFile

CS61CL L15 Parallelism(7) Pearce, Summer 2009 © UCB

Simple Superscalar MIPS CPU

clk

5

W0RaRb
Register

File

Rd

Data
In

Data
Addr Data

Memory

Inst0

Instruction
Address

Instruction
Memory

PC

5
Rs

5
Rt

32

3232

32

A

B

N
ex

t A
dd

re
ss

clk clk

A
LU

32A
LU

5
Rd

Inst1

5
Rs

5
Rt

W1RcRd

C

D
32

• Can now do (up
to) 2 instructions
in 1 cycle!

CS61CL L15 Parallelism(8) Pearce, Summer 2009 © UCB

Simple Superscalar MIPS CPU (cont.)

• Considerations
• ISA now has to be changed
• Forwarding for pipelining now harder

• Limitations
• Programmer must explicitly generate
parallel code OR require even more
complex hardware for scheduling

• Improvement only if other instructions
can fill slots

• Doesnʼt scale well

CS61CL L15 Parallelism(9) Pearce, Summer 2009 © UCB

Superscalar in Practice

• Performance improvement depends
on program and programmer being
able to fully utilize all slots

• Can be parts other than ALU (like load)
• Usefulness will be more apparent
when combined with other parallel
techniques

• Other techniques, such as vectored
data

CS61CL L15 Parallelism(10) Pearce, Summer 2009 © UCB

Multithreading

• Multithreading is running multiple
threads through the same hardware

• Could we do Timeslicing better in
hardware?

• Consider if we gave the OS the
abstraction of having 4 physical CPUʼs
that share memory and each executes
one thread, but we did it all on 1
physical CPU?

CS61CL L15 Parallelism(11) Pearce, Summer 2009 © UCB

Static Multithreading Example

ALU

Introduced in 1964
by Seymour
Cray

Pipeline Stage

Appears to
be 4 CPU’s
at 1/4 clock

CS61CL L15 Parallelism(12) Pearce, Summer 2009 © UCB

Static Multithreading Example Analyzed

• Results:
• 4 Threads running in hardware
• Pipeline hazards reduced

-  No more need to forward
-  No control issues
-  Less structural hazards

• Depends on being able to fully generate 4
threads evenly

-  Example if 1 Thread does 75% of the work
–  Utilization = (% time run)(% work done)
 = (.25)(.75) + (.75)(.25) = .375
 = 37.5%

CS61CL L15 Parallelism(13) Pearce, Summer 2009 © UCB

Dynamic Multithreading

• Adds flexibility in choosing time to
switch thread

• Simultaneous Multithreading (SMT)
• Called Hyperthreading by Intel
• Run multiple threads at the same time
• Just allocate functional units when
available

• Superscalar helps with this

CS61CL L15 Parallelism(14) Pearce, Summer 2009 © UCB

Dynamic Multithreading Example

1

2

3

4

5

6

7

8

9

M MFXFXFPFPBRCCCycle

One thread, 8 units
M MFXFXFPFPBRCCCycle

Two threads, 8 units

1

2

3

4

5

6

7

8

9

CS61CL L15 Parallelism(15) Pearce, Summer 2009 © UCB

•  Put multiple CPUʼs on the same die
•  Why is this better than multiple

dies?
•  Smaller, Cheaper
•  Closer, so lower inter-processor latency
•  Can share a L2 Cache (complicated)
•  Less power

•  Cost of multicore:
•  Complexity
•  Slower single-thread execution

Multicore

CS61CL L15 Parallelism(16) Pearce, Summer 2009 © UCB

Two CPUs, two caches, shared DRAM ...

CPU0

Cache

Addr Value

CPU1

Shared Main Memory
Addr Value
16

Cache

Addr Value

5

CPU0:
LW R2, 16(R0)

516

CPU1:
LW R2, 16(R0)

16 5

Write-through caches

View of memory no
longer “coherent”.

Loads of location 16
from CPU0 and
CPU1 see different
values!

CPU1:
SW R0,16(R0)

0

0

CS61CL L15 Parallelism(17) Pearce, Summer 2009 © UCB

Multicore Example (IBM Power5)

Core #1

Core #2

Shared
Stuff

CS61CL L15 Parallelism(18) Pearce, Summer 2009 © UCB

Administrivia
• Absolutely nothing else due!

• You survived, congratulations….
-  Now study for for your final tomorrow!

• Final Exam: Tomorrow, 8/13, 9am-12. 277 Cory
(this room)

• Final Exam Review: Right after this lecture!
• Sleep! We wonʼt be answering any questions

late into the night in an effort to get you guys to
go to bed early! If you donʼt sleep, you wonʼt do
well.

CS61CL L15 Parallelism(19) Pearce, Summer 2009 © UCB

High Level Message

• Everything is changing
• Old conventional wisdom is out
• We desperately need new approach to
HW and SW based on parallelism
since industry has bet its future that
parallelism works

• Need to create a “watering hole” to
bring everyone together to quickly find
that solution

• architects, language designers,
application experts, numerical analysts,
algorithm designers, programmers, …

CS61CL L15 Parallelism(20) Pearce, Summer 2009 © UCB

Conventional Wisdom (CW) in Computer Architecture

1.  Old CW: Power is free, but transistors expensive
•  New CW: Power wall Power expensive, transistors “free”

•  Can put more transistors on a chip than have power to turn on

2.  Old CW: Multiplies slow, but loads fast
•  New CW: Memory wall Loads slow, multiplies fast

•  200 clocks to DRAM, but even FP multiplies only 4 clocks

3.  Old CW: More ILP via compiler / architecture innovation
•  Branch prediction, speculation, Out-of-order execution, VLIW, …

•  New CW: ILP wall Diminishing returns on more ILP
4.  Old CW: 2X CPU Performance every 18 months
•  New CW is Power Wall + Memory Wall + ILP Wall = Brick Wall

CS61CL L15 Parallelism(21) Pearce, Summer 2009 © UCB

Uniprocessor Performance (SPECint)

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X

CS61CL L15 Parallelism(22) Pearce, Summer 2009 © UCB

Need a New Approach

•  Berkeley researchers from many backgrounds met
between February 2005 and December 2006 to
discuss parallelism
•  Circuit design, computer architecture, massively parallel

computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

•  Krste Asanovic, Ras Bodik, Jim Demmel, John
Kubiatowicz, Edward Lee, George Necula, Kurt
Keutzer, Dave Patterson, Koshik Sen, John Shalf,
Kathy Yelick + others

•  Tried to learn from successes in embedded and
high performance computing

•  Led to 7 Questions to frame parallel research

CS61CL L15 Parallelism(23) Pearce, Summer 2009 © UCB

7 Questions for Parallelism
•  Applications:

1. What are the apps? 
2. What are kernels of apps?

•  Hardware:

3. What are HW building blocks? 
4. How to connect them?

•  Programming Model & Systems
Software:

5. How to describe apps & kernels? 
6. How to program the HW?

•  Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

CS61CL L15 Parallelism(24) Pearce, Summer 2009 © UCB

• Power limits leading edge chip designs
• Intel Tejas Pentium 4 cancelled due to
power issues

• Yield on leading edge processes
dropping dramatically

• IBM quotes yields of 10 – 20% on 8-
processor Cell

• Design/validation leading edge chip is
becoming unmanageable

• Verification teams > design teams on
leading edge processors

Hardware Tower:  
What are the problems?

CS61CL L15 Parallelism(25) Pearce, Summer 2009 © UCB

HW Solution: Small is Beautiful

•  Expect modestly pipelined (5- to 9-stage)  
CPUs, FPUs, vector, Single Inst Multiple Data (SIMD)
Processing Elements (PEs)
•  Small cores not much slower than large cores

•  Parallel is energy efficient path to performance: P≈V2
•  Lower threshold and supply voltages lowers energy per op

•  Redundant processors can improve chip yield
•  Cisco Metro 188 CPUs + 4 spares;  

Sun Niagara sells 6 or 8 CPUs

•  Small, regular processing elements easier to verify

•  One size fits all? Heterogeneous processors?

CS61CL L15 Parallelism(26) Pearce, Summer 2009 © UCB

Number of Cores/Socket

•  We need revolution, not evolution

•  Software or architecture alone canʼt fix parallel
programming problem, need innovations in both

•  “Multicore” 2X cores per generation: 2, 4, 8, …

•  “Manycore” 100s is highest performance per unit
area, and per Watt, then 2X per generation:  
64, 128, 256, 512, 1024 …

•  Multicore architectures & Programming Models good
for 2 to 32 cores wonʼt evolve to Manycore systems
of 1000ʼs of processors  
⇒ Desperately need HW/SW models that work for
Manycore or will run out of steam 
(as ILP ran out of steam at 4 instructions)

CS61CL L15 Parallelism(27) Pearce, Summer 2009 © UCB

1.  ≈ Only companies can build HW, and it takes
years

2.  Software people donʼt start working hard until
hardware arrives

•  3 months after HW arrives, SW people list
everything that must be fixed, then we all
wait 4 years for next iteration of HW/SW

3.  How get 1000 CPU systems in hands of
researchers to innovate in timely fashion on
in algorithms, compilers, languages, OS,
architectures, … ?

4.  Can avoid waiting years between HW/SW
iterations?

Measuring Success:  
What are the problems?

CS61CL L15 Parallelism(28) Pearce, Summer 2009 © UCB

Build Academic Manycore from FPGAs

•  As ≈ 16 CPUs will fit in Field Programmable Gate Array
(FPGA), 1000-CPU system from ≈ 64 FPGAs?
•  8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
•  FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

•  HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
•  E.g., 1000 processor, standard ISA binary-compatible, 64-bit,  

cache-coherent supercomputer @ ≈ 150 MHz/CPU in 2007
•  RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and

Washington

•  “Research Accelerator for Multiple Processors” as a
vehicle to attract many to parallel challenge

CS61CL L15 Parallelism(29) Pearce, Summer 2009 © UCB

Multiprocessing Watering Hole

•  Killer app: ≈ All CS Research, Advanced Development
•  RAMP attracts many communities to shared artifact  
⇒ Cross-disciplinary interactions

•  RAMP as next Standard Research/AD Platform?  
(e.g., VAX/BSD Unix in 1980s)

Parallel file system

Flight Data Recorder Transactional Memory
Fault insertion to check dependability

Data center in a box

Internet in a box

Dataflow language/computer

Security enhancements
Router design Compile to FPGA

Parallel languages 128-bit Floating Point Libraries

CS61CL L15 Parallelism(30) Pearce, Summer 2009 © UCB

ParLab Research Overview

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Dwarfs (Common Patterns)

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

CS61CL L15 Parallelism(31) Pearce, Summer 2009 © UCB

Tessellation: The ParLab OS

•  Resources (cores, memory,
cache, etc) are divided into
discrete units which are
isolated from one another

•  These divisions are able to
change over time, but with
time slices (we think) larger
than what is currently done
for processes today

•  Performance and resource
guarantees are associated
with partitions. This is called
Quality of Service (QoS)

•  OS written completely from
scratch. Coding began Jan 09.

•  Key Concept: Space-Time Partitioning

CS61CL L15 Parallelism(32) Pearce, Summer 2009 © UCB

What I do on Tessellation

•  Remote System Calls (RSCs)
•  System Calls are functions that transfer control to the kernel to perform

privileged operations
•  Tessellation doesnʼt have Disk / File System support, so we package up

file related System Calls and send them over some medium (serial /
Ethernet) to a remote machine for processing and return the result

•  PCI / Ethernet / IOAPIC Support
•  Wrote a basic PCI bus parser, and Ethernet driver. This gives

Tessellation the ability to perform basic network communication. RSCs
currently run over this medium

•  Standalone TCP/IP Stack Integration
•  Responsible for integrating a third-party TCP/IP stack into OS as a user

space library running inside of a partition – the first example of our
partitioning model

•  Interrupt Routing
•  Wrote the system that allows device interrupts to be routed to specific

cores or groups of cores. Random side note: AHHHH x86 is ugly! Be
grateful for MIPS!

CS61CL L15 Parallelism(33) Pearce, Summer 2009 © UCB

How to get involved

•  Weʼve talked in-depth about a few research projects. The purpose of
this was to give you a brief overview of some of the great projects
being worked on here at Cal by undergraduates just like you

•  Iʼm an undergraduate transfer. I sat in the very seats you were in
Spring 08. I began work on Tessellation by simply asking my CS162
Professor if he had a project he needed help with

•  How to get involved:
•  Attend lecture and office hours, get to know the instructors
•  Have conversations with professors, ask them what they are

working on, and if they need help (the answer will likely be yes)
•  Not sure who to talk too? Check out these great resources.

These programs have lists of projects looking for
undergraduates. You can get units, and in some cases money!

•  http://research.berkeley.edu/urap/
•  http://coe.berkeley.edu/students/current-undergraduates/student-research/

uro/

CS61CL L15 Parallelism(34) Pearce, Summer 2009 © UCB

Summary

• Superscalar: More functional units
• Multithread: Multiple threads
executing on same CPU

• Multicore: Multiple CPUʼs on the same
die

• The gains from all these parallel
hardware techniques relies heavily on
the programmer being able to map
their task well to multiple threads

• Research projects need your help!

CS61CL L15 Parallelism(35) Pearce, Summer 2009 © UCB

Reasons for Optimism towards Parallel Revolution this time

•  End of sequential microprocessor/faster clock rates
•  No looming sequential juggernaut to kill parallel revolution

•  SW & HW industries fully committed to parallelism
•  End of lazy Programming Era

•  Mooreʼs Law continues, so soon can put 1000s of simple cores
on an economical chip

•  Open Source Software movement means that SW stack can
evolve more quickly than in past

•  RAMP as vehicle to ramp up parallel research

•  Tessellation as a way to manage and utilize new manycore
hardware

CS61CL L15 Parallelism(36) Pearce, Summer 2009 © UCB

Credits

• Thanks to the following people and
possibly others for these slides:

• Krste Asanovic
• Scott Beamer
• Albert Chae
• Dan Garcia
• John Kubiatowicz

CS61CL L15 Parallelism(37) Pearce, Summer 2009 © UCB

Up next…..

Review time with Josh and James!

