
CS61C L12 Virtual Memory (1) Huddleston, Summer 2009 © UCB

CS61CL : Machine Structures
Lecture #12 – Virtual Memory

2009-08-03

Jeremy Huddleston

CS61C L12 Virtual Memory (2) Huddleston, Summer 2009 © UCB

Review
  Cache design choices:

  Size of cache: speed v. capacity
  Block size (i.e., cache aspect ratio)
  Write Policy (Write through v. write back)
  Associativity choice of N (direct-mapped v. set v.

fully associative)
  Block replacement policy
  2nd level cache?
  3rd level cache?

  Use performance model to pick between
choices, depending on programs,
technology, budget, ...

CS61C L12 Virtual Memory (3) Huddleston, Summer 2009 © UCB

Lower Level

Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level
Faster

Larger

Cache
Blocks

Thus far {

{
Next:
Virtual
Memory

Another View of the Memory Hierarchy

CS61C L12 Virtual Memory (4) Huddleston, Summer 2009 © UCB

Memory Hierarchy Requirements
  If Principle of Locality allows caches to

offer (close to) speed of cache memory
with size of DRAM memory, then
recursively why not use at next level to
give speed of DRAM memory, size of
Disk memory?

  While we’re at it, what other things do we
need from our memory system?

CS61C L12 Virtual Memory (5) Huddleston, Summer 2009 © UCB

Memory Hierarchy Requirements
  Allow multiple processes to

simultaneously occupy memory and
provide protection – don’t let one
program read/write memory from another

  Address space – give each program the
illusion that it has its own private memory
  Suppose code starts at address 0x40000000.

But different processes have different code,
both residing at the same address. So each
program has a different view of memory.

CS61C L12 Virtual Memory (6) Huddleston, Summer 2009 © UCB

Virtual Memory
  Next level in the memory hierarchy:

  Provides program with illusion of a very large
main memory:

  Working set of “pages” reside in main memory -
others reside on disk.

  Also allows OS to share memory, protect
programs from each other

  Today, more important for protection vs. just
another level of memory hierarchy

  Each process thinks it has all the memory to
itself

  (Historically, it predates caches)

CS61C L12 Virtual Memory (7) Huddleston, Summer 2009 © UCB

Three Advantages of Virtual Memory
  1) Translation:

  Program can be given consistent view of
memory, even though physical memory is
scrambled

  Makes multiple processes reasonable
  Only the most important part of program

(“Working Set”) must be in physical memory
  Contiguous structures (like stacks) use only

as much physical memory as necessary yet
still grow later

CS61C L12 Virtual Memory (8) Huddleston, Summer 2009 © UCB

Three Advantages of Virtual Memory
  2) Protection:

  Different processes protected from each other
  Different pages can be given special behavior

  (Read Only, Invisible to user programs, etc).
  Kernel data protected from User programs
  Very important for protection from malicious

programs ⇒ Far more “viruses” under Microsoft
Windows

  Special Mode in processor (“Kernel mode”)
allows processor to change page table/TLB

  3) Sharing:
  Can map same physical page to multiple users

(“Shared memory”)

CS61C L12 Virtual Memory (9) Huddleston, Summer 2009 © UCB

Virtual to Physical Address Translation

  Each program operates in its own virtual
address space; ~only program running

  Each is protected from the other
  OS can decide where each goes in memory
  Hardware gives virtual ⇒ physical mapping

virtual

address

(inst. fetch

load, store)

Program

operates in

its virtual

address

space

HW

mapping
 physical

address

(inst. fetch

load, store)

Physical

memory

(incl. caches)

CS61C L12 Virtual Memory (10) Huddleston, Summer 2009 © UCB

  Book title like virtual address
  Library of Congress call number like

physical address
  Card catalogue like page table, mapping

from book title to call #
  On card for book, in local library vs. in

another branch like valid bit indicating in
main memory vs. on disk

  On card, available for 2-hour in library
use (vs. 2-week checkout) like access
rights

Analogy

CS61C L12 Virtual Memory (11) Huddleston, Summer 2009 © UCB

0

∞

OS

User A

User B

User C

$base

$base+
$bound

• Want:
• discontinuous mapping
• Process size >> mem

• Addition not enough!

⇒ use Indirection!

Enough space for User D,
but discontinuous
(“fragmentation problem”)

Simple Example: Base and Bound Reg

CS61C L12 Virtual Memory (12) Huddleston, Summer 2009 © UCB

  Divide into equal sized
chunks (about 4 KB - 8 KB)

  Any chunk of Virtual Memory
assigned to any chuck of
Physical Memory (“page”)

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

Mapping Virtual Memory to Physical Memory

0

CS61C L12 Virtual Memory (13) Huddleston, Summer 2009 © UCB

Paging Organization (assume 1 KB pages)

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk to
physical memory

page 0 1K
1K

1K

0
1024

31744

Virtual
Memory

Virtual
Address

page 1

page 31

1K 2048 page 2

...

page 0 0
1024

7168

Physical
Address

Physical
Memory

1K
1K

1K

page 1

page 7
...

CS61C L12 Virtual Memory (14) Huddleston, Summer 2009 © UCB

Virtual Memory Mapping Function
  Cannot have simple function to predict

arbitrary mapping
  Use table lookup of mappings

  Use table lookup (“Page Table”) for
mappings: Page number is index

  Virtual Memory Mapping Function
  Physical Offset = Virtual Offset
  Physical Page Number

= PageTable[Virtual Page Number]
(P.P.N. also called “Page Frame”)

Page Number Offset

CS61C L12 Virtual Memory (15) Huddleston, Summer 2009 © UCB

Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into

page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L12 Virtual Memory (16) Huddleston, Summer 2009 © UCB

Page Table
  A page table is an operating system

structure which contains the mapping of
virtual addresses to physical locations
  There are several different ways, all up to the

operating system, to keep this data around
  Each process running in the operating

system has its own page table
  “State” of process is PC, all registers, plus

page table
  OS changes page tables by changing

contents of Page Table Base Register

CS61C L12 Virtual Memory (17) Huddleston, Summer 2009 © UCB

Requirements revisited
  Remember the motivation for VM:
  Sharing memory with protection

  Different physical pages can be allocated to
different processes (sharing)

  A process can only touch pages in its own
page table (protection)

  Separate address spaces
  Since programs work only with virtual

addresses, different programs can have
different data/code at the same address!

  What about the memory hierarchy?

CS61C L12 Virtual Memory (18) Huddleston, Summer 2009 © UCB

Page Table Entry (PTE) Format
  Contains either Physical Page Number or

indication not in Main Memory
  OS maps to disk if Not Valid (V = 0)

  If valid, also check if have permission to
use page: Access Rights (A.R.) may be
Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS61C L12 Virtual Memory (19) Huddleston, Summer 2009 © UCB

Paging/Virtual Memory Multiple Processes
User B:  

Virtual Memory

∞

Code

Static

Heap

Stack

0

Code

Static

Heap

Stack

A

Page

Table

B

Page

Table

User A:  
Virtual Memory

∞

0

0

Physical

 Memory

64 MB

CS61C L12 Virtual Memory (20) Huddleston, Summer 2009 © UCB

Comparing the 2 levels of hierarchy
Cache version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

CS61C L12 Virtual Memory (21) Huddleston, Summer 2009 © UCB

Notes on Page Table
  Solves Fragmentation problem: all chunks

same size, so all holes can be used
  OS must reserve “Swap Space” on disk

for each process
  To grow a process, ask Operating System

  If unused pages, OS uses them first
  If not, OS swaps some old pages to disk
  (Least Recently Used to pick pages to swap)

  Each process has own Page Table
  Will add details, but Page Table is essence of

Virtual Memory

CS61C L12 Virtual Memory (22) Huddleston, Summer 2009 © UCB

  A program’s address
space contains 4 regions:
  stack: local variables,

grows downward
  heap: space requested for

pointers via malloc() ;
resizes dynamically, grows
upward

  static data: variables
declared outside main,
does not grow or shrink

  code: loaded when program
starts, does not change For now, OS somehow prevents

accesses between stack and heap
(gray hash lines).

code

static data

heap

stack

~ FFFF FFFFhex

~ 0hex

Why would a process need to “grow”?

CS61C L12 Virtual Memory (23) Huddleston, Summer 2009 © UCB

Virtual Memory Problem #1
  Map every address ⇒ 1 indirection via Page

Table in memory per virtual address ⇒ 1
virtual memory accesses =
2 physical memory accesses ⇒ SLOW!

  Observation: since locality in pages of data,
there must be locality in virtual address
translations of those pages

  Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

  For historical reasons, this cache is called a
Translation Lookaside Buffer, or TLB

CS61C L12 Virtual Memory (24) Huddleston, Summer 2009 © UCB

Translation Look-Aside Buffers (TLBs)

  TLBs usually small, typically 128 - 256
entries

  Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor TLB
Lookup Cache Main

Memory

VA PA
miss

hit data
Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS61C L12 Virtual Memory (25) Huddleston, Summer 2009 © UCB

Fetching data on a memory read
  Check TLB (input: VPN, output: PPN)

  hit: fetch translation
  miss: check page table (in memory)

  Page table hit: fetch translation
  Page table miss: page fault, fetch page from disk to memory, return

translation to TLB

  Check cache (input: PPN, output: data)
  hit: return value
  miss: fetch value from memory, remember it in cache, return value

Processor TLB
Lookup

Cache Main
Memory

VA PA
miss

hit data
Trans-
lation

hit

miss

CS61C L12 Virtual Memory (26) Huddleston, Summer 2009 © UCB

Address Translation using TLB

PPN Offset
Physical Address

VPN
Offset

Virtual Address

INDEX
TLB

Physical
Page

Number
P. P. N.

P. P. N.
...

TLB Tag
(Tag used

just like
in cache)

TLB Tag

Tag Offset INDEX Data Cache

Tag Data
Tag Data

TLB Tag

CS61C L12 Virtual Memory (27) Huddleston, Summer 2009 © UCB

Typical TLB Format
Two ways of looking at it:

 Valid Dirty Ref Tag Cached Data
 (What is in the PT)

 Valid Dirty Ref Tag Dirty Access Physical
 TLB TLB TLB Page Rights Page #

  TLB just a cache on the page table mappings
  Dirty Page: since use write back, need to know whether or not

to write page to disk when replaced
  Dirty TLB: since we may update the “cached” data (like the

dirty page bit), need to know if we need to write back to the
page table.

  Ref: Used to help calculate LRU on replacement
  Cleared by OS periodically, then checked to see if page was referenced

CS61C L12 Virtual Memory (28) Huddleston, Summer 2009 © UCB

What if not in TLB?
  Option 1: Hardware checks page table

and loads new Page Table Entry into TLB
  Option 2: Hardware traps to kernel (OS),

up to kernel to decide what to do
  MIPS follows Option 2: Hardware knows

nothing about page table
  A trap is a synchronous exception in a user

process, often resulting in the kernel taking
over and performing some action before
returning to the program.
  More about exceptions next lecture

CS61C L12 Virtual Memory (29) Huddleston, Summer 2009 © UCB

What if the data is on disk?
  We load the page off the disk into a free

block of memory, using a DMA transfer
(Direct Memory Access – special
hardware support to avoid processor)
  Meantime we switch to some other process

waiting to be run
  When the DMA is complete, we get an

interrupt and update the process's page
table
  So when we switch back to the task, the

desired data will be in memory

CS61C L12 Virtual Memory (30) Huddleston, Summer 2009 © UCB

What if we don’t have enough memory?

  We chose some other page belonging to a
program and transfer it onto the disk if it
is dirty
  If clean (disk copy is up-to-date),

just overwrite that data in memory
  We chose the page to evict based on

replacement policy (e.g., LRU)
  And update that program's page table to

reflect the fact that its memory moved
somewhere else

  If continuously swap between disk and
memory, called Thrashing

CS61C L12 Virtual Memory (31) Huddleston, Summer 2009 © UCB

Question (1/3)
  40-bit virtual address, 16 KB page

  36-bit physical address

  Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?

Page Offset (? bits)
Virtual Page Number (? bits)

Page Offset (? bits)
Physical Page Number (? bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L12 Virtual Memory (32) Huddleston, Summer 2009 © UCB

  40-bit virtual address, 16 KbiB page

  36-bit physical address

  Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?

(1/3) Answer

Page Offset (14 bits)
Virtual Page Number (26 bits)

Page Offset (14 bits)
Physical Page Number (22 bits)

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16
3: 26/14, 22/14
4: 26/14, 26/10
5: 28/12, 24/12

CS61C L12 Virtual Memory (33) Huddleston, Summer 2009 © UCB

Question (2/3): 40b VA, 36b PA
  2-way assoc. TLB, 512 entries, 40b VA:

  TLB Entry: Valid bit, TLB Dirty bit, TLB LRU,
Access Control (say 2 bits),
Virtual Page Tag, Page Dirty bit, Physical Page
Number

  Number of bits in TLB Tag / Index / Entry?

Page Offset (14 bits)
TLB Index (? bits)
TLB Tag (? bits)

V
 D
 TLB Tag (? bits)
 Access (2 bits)
Physical Page No. (? bits)

1: 12 / 14 / 40 (TLB Tag / Index / Entry)
2: 14 / 12 / 42
3: 18 / 8 / 46
4: 18 / 8 / 60

D
lru

CS61C L12 Virtual Memory (34) Huddleston, Summer 2009 © UCB

(2/3) Answer
  2-way set-assoc data cache, 256 (28) “sets”, 2 TLB

entries per set => 8 bit index

  TLB Entry: Valid bit, TLB Dirty bit, LRU bit, Page
Dirty bit, Access Control (2 bits),
Virtual Page Number, Physical Page Number

Page Offset (14 bits)

Virtual Page Number (26 bits)

TLB Index (8 bits)
TLB Tag (18 bits)

V
 D
 TLB Tag (18 bits)
 Access (2 bits)
Physical Page No. (22 bits)

1: 12 / 14 / 40 (TLB Tag / Index / Entry)
2: 14 / 12 / 42
3: 18 / 8 / 46
4: 18 / 8 / 60

lru
 D

CS61C L12 Virtual Memory (35) Huddleston, Summer 2009 © UCB

Question (3/3)
  2-way set-assoc, 64KbiB data cache, 64B block

  Data Cache Entry: Valid bit, Dirty bit, Cache tag
+ ? bits of Data

  Number of bits in Data cache Tag / Index /
Offset / Entry?

Block Offset (? bits)

Physical Page Address (36 bits)

Cache Index (? bits)
Cache Tag (? bits)

V
 D
 Cache Tag (? bits)
 Cache Data (? bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L12 Virtual Memory (36) Huddleston, Summer 2009 © UCB

(3/3) Answer
  2-way set-assoc data cache, 64KbiB / 64B =1Kbi

(210) “sets”, 2 entries per sets => 9 bit index

  Data Cache Entry: Valid bit, Dirty bit, Cache tag
+ 64 Bytes of Data

Block Offset (6 bits)

Physical Page Address (36 bits)

Cache Index (9 bits)
Cache Tag (21 bits)

V
 D
 Cache Tag (21 bits)
 Cache Data (64 Bytes = 512 bits)

1: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
2: 20 / 10 / 6 / 86
3: 20 / 10 / 6 / 534
4: 21 / 9 / 6 / 87
5: 21 / 9 / 6 / 535

CS61C L12 Virtual Memory (37) Huddleston, Summer 2009 © UCB

And in conclusion…
  Manage memory to disk? Treat as cache

  Included protection as bonus, now critical
  Use Page Table of mappings for each user

vs. tag/data in cache
  TLB is cache of Virtual ⇒ Physical addr trans

  Virtual Memory allows protected sharing
of memory between processes

  Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

CS61C L12 Virtual Memory (38) Huddleston, Summer 2009 © UCB

And in conclusion…
  Virtual memory to Physical Memory

Translation too slow?
  Add a cache of Virtual to Physical Address

Translations, called a TLB
  Spatial Locality means Working Set of

Pages is all that must be in memory for
process to run fairly well

  Virtual Memory allows protected sharing
of memory between processes with less
swapping to disk

CS61C L12 Virtual Memory (39) Huddleston, Summer 2009 © UCB

Bonus slides
  These are extra slides that used to be

included in lecture notes, but have been
moved to this, the “bonus” area to serve
as a supplement.

  The slides will appear in the order they
would have in the normal presentation

CS61C L12 Virtual Memory (40) Huddleston, Summer 2009 © UCB

4 Qs for any Memory Hierarchy
  Q1: Where can a block be placed?

  One place (direct mapped)
  A few places (set associative)
  Any place (fully associative)

  Q2: How is a block found?
  Indexing (as in a direct-mapped cache)
  Limited search (as in a set-associative cache)
  Full search (as in a fully associative cache)
  Separate lookup table (as in a page table)

  Q3: Which block is replaced on a miss?
  Least recently used (LRU)
  Random

  Q4: How are writes handled?
  Write through (Level never inconsistent w/lower)
  Write back (Could be “dirty”, must have dirty bit)

CS61C L12 Virtual Memory (41) Huddleston, Summer 2009 © UCB

Q1: Where block placed in upper level?

  Block #12 placed in 8 block cache:
  Fully associative
  Direct mapped
  2-way set associative
  Set Associative Mapping = Block # Mod # of

Sets
0 1 2 3 4 5 6 7 Block

no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7 Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

CS61C L12 Virtual Memory (42) Huddleston, Summer 2009 © UCB

  Direct indexing (using index and block
offset), tag compares, or combination

  Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L12 Virtual Memory (43) Huddleston, Summer 2009 © UCB

 Easy for Direct Mapped
 Set Associative or Fully Associative:

  Random
  LRU (Least Recently Used)

Miss Rates
Associativity: 2-way 4-way 8-
way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L12 Virtual Memory (44) Huddleston, Summer 2009 © UCB

Q4: What to do on a write hit?
  Write-through

  update the word in cache block and
corresponding word in memory

  Write-back
  update word in cache block
  allow memory word to be “stale”
  => add ‘dirty’ bit to each line indicating that

memory be updated when block is replaced
  => OS flushes cache before I/O !!!

  Performance trade-offs?
  WT: read misses cannot result in writes
  WB: no writes of repeated writes

CS61C L12 Virtual Memory (45) Huddleston, Summer 2009 © UCB

Why Translation Lookaside Buffer (TLB)?

  Paging is most popular implementation of
virtual memory
(vs. base/bounds)

  Every paged virtual memory access must
be checked against Entry of Page Table in
memory to provide protection /
indirection

  Cache of Page Table Entries (TLB) makes
address translation possible without
memory access in common case to make
fast

CS61C L12 Virtual Memory (46) Huddleston, Summer 2009 © UCB

Bonus slide: Virtual Memory Overview (1/3)

  User program view of memory:
  Contiguous
  Start from some set address
  Infinitely large
  Is the only running program

  Reality:
  Non-contiguous
  Start wherever available memory is
  Finite size
  Many programs running at a time

CS61C L12 Virtual Memory (47) Huddleston, Summer 2009 © UCB

Bonus slide: Virtual Memory Overview (2/3)

  Virtual memory provides:
  illusion of contiguous memory
  all programs starting at same set address
  illusion of ~ infinite memory

(232 or 264 bytes)
  protection

CS61C L12 Virtual Memory (48) Huddleston, Summer 2009 © UCB

Bonus slide: Virtual Memory Overview (3/3)

  Implementation:
  Divide memory into “chunks” (pages)
  Operating system controls page table that

maps virtual addresses into physical
addresses

  Think of memory as a cache for disk
  TLB is a cache for the page table

CS61C L12 Virtual Memory (49) Huddleston, Summer 2009 © UCB

Address Map, Mathematically
V = {0, 1, . . . , n - 1} virtual address space (n > m)
M = {0, 1, . . . , m - 1} physical address space
MAP: V --> M U {θ} address mapping function

MAP(a) = a' if data at virtual address a
is present in physical address a' and a' in M
= θ if data at virtual address a is not present in M

Processor
Name Space V a

Addr Trans
Mechanism a

Main
Memory

a'
physical
address

 Disk

OS performs
this transfer

OS fault
handler

0

page fault

