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Review 
  Cache design choices: 

  Size of cache: speed v. capacity 
  Block size (i.e., cache aspect ratio) 
  Write Policy (Write through v. write back) 
  Associativity choice of N (direct-mapped v. set v. 

fully associative) 
  Block replacement policy 
  2nd level cache? 
  3rd level cache? 

  Use performance model to pick between 
choices, depending on programs, 
technology, budget, ... 
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Memory Hierarchy Requirements 
  If Principle of Locality allows caches to 

offer (close to) speed of cache memory 
with size of DRAM memory, then 
recursively why not use at next level to 
give speed of DRAM memory,  size of 
Disk memory? 

  While we’re at it, what other things do we 
need from our memory system? 
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Memory Hierarchy Requirements 
  Allow multiple processes to 

simultaneously occupy memory and 
provide protection – don’t let one 
program read/write memory from another 

  Address space – give each program the 
illusion that it has its own private memory 
  Suppose code starts at address 0x40000000.  

But different processes have different code, 
both residing at the same address.  So each 
program has a different view of memory. 



CS61C L12 Virtual Memory (6) Huddleston, Summer 2009 © UCB 

Virtual Memory 
  Next level in the memory hierarchy: 

  Provides program with illusion of a very large 
main memory: 

  Working set of “pages” reside in main memory - 
others reside on disk. 

  Also allows OS to share memory, protect 
programs from each other 

  Today, more important for protection vs. just 
another level of memory hierarchy 

  Each process thinks it has all the memory to 
itself 

  (Historically, it predates caches) 
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Three Advantages of Virtual Memory 
  1) Translation:  

  Program can be given consistent view of 
memory, even though physical memory is 
scrambled 

  Makes multiple processes reasonable  
  Only the most important part of program 

(“Working Set”) must be in physical memory 
  Contiguous structures (like stacks) use only 

as much physical memory as necessary yet 
still grow later 
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Three Advantages of Virtual Memory 
  2) Protection: 

  Different processes protected from each other 
  Different pages can be given special behavior 

   (Read Only, Invisible to user programs, etc). 
  Kernel data protected from User programs 
  Very important for protection from malicious 

programs ⇒ Far more “viruses” under Microsoft 
Windows 

  Special Mode in processor (“Kernel mode”) 
allows processor to change page table/TLB 

  3) Sharing: 
  Can map same physical page to multiple users 

(“Shared memory”) 
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Virtual to Physical Address Translation 

  Each program operates in its own virtual 
address space; ~only program running 

  Each is protected from the other 
  OS can decide where each goes in memory 
  Hardware gives virtual ⇒ physical mapping 
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(inst. fetch

load, store)
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 physical
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  Book title like virtual address 
  Library of Congress call number like 

physical address 
  Card catalogue like page table, mapping 

from book title to call # 
  On card for book, in local library vs. in 

another branch like valid bit indicating in 
main memory vs. on disk 

  On card, available for 2-hour in library 
use (vs. 2-week checkout) like access 
rights 

Analogy 
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  Divide into equal sized 
chunks (about 4 KB - 8 KB) 

  Any chunk of Virtual Memory 
assigned to any chuck of 
Physical Memory (“page”) 
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Paging Organization (assume 1 KB pages) 
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Virtual Memory Mapping Function 
  Cannot have simple function to predict 

arbitrary mapping 
  Use table lookup of mappings 

  Use table lookup (“Page Table”) for 
mappings: Page number is index 

  Virtual Memory Mapping Function 
  Physical Offset = Virtual Offset 
  Physical Page Number 

= PageTable[Virtual Page Number] 
(P.P.N. also called “Page Frame”) 

Page Number       Offset 
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Address Mapping: Page Table 
Virtual Address: 

page no. offset 

Page Table 
Base Reg 

Page Table located in physical memory 
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Page Table 
  A page table is an operating system 

structure which contains the mapping of 
virtual addresses to physical locations 
  There are several different ways, all up to the 

operating system, to keep this data around 
  Each process running in the operating 

system has its own page table 
  “State” of process is PC, all registers, plus 

page table 
  OS changes page tables by changing 

contents of Page Table Base Register 
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Requirements revisited 
  Remember the motivation for VM: 
  Sharing memory with protection 

  Different physical pages can be allocated to 
different processes (sharing) 

  A process can only touch pages in its own 
page table (protection) 

  Separate address spaces 
  Since programs work only with virtual 

addresses, different programs can have 
different data/code at the same address! 

  What about the memory hierarchy? 
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Page Table Entry (PTE) Format 
  Contains either Physical Page Number or 

indication not in Main Memory 
  OS maps to disk if Not Valid (V = 0) 

  If valid, also check if have permission to 
use page: Access Rights (A.R.) may be 
Read Only, Read/Write, Executable 

... 
Page Table 

Val 
-id 

Access 
Rights 

Physical 
Page 
Number 

V A.R. P. P. N. 

V A.R. P. P.N. 

... 

P.T.E. 
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Paging/Virtual Memory Multiple Processes 
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Comparing the 2 levels of hierarchy 
Cache version   Virtual Memory vers. 
Block or Line   Page 
Miss    Page Fault 
Block Size: 32-64B  Page Size: 4K-8KB 
Placement:   Fully Associative 

Direct Mapped,  
N-way Set Associative 

Replacement:   Least Recently Used 
LRU or Random  (LRU) 

Write Thru or Back  Write Back 
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Notes on Page Table 
  Solves Fragmentation problem: all chunks 

same size, so all holes can be used 
  OS must reserve “Swap Space” on disk 

for each process 
  To grow a process, ask Operating System 

  If unused pages, OS uses them first 
  If not, OS swaps some old pages to disk 
  (Least Recently Used to pick pages to swap) 

  Each process has own Page Table 
  Will add details, but Page Table is essence of 

Virtual Memory 
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  A program’s address 
space contains 4 regions: 
  stack: local variables, 

grows downward  
  heap: space requested for 

pointers via malloc() ; 
resizes dynamically, grows 
upward 

  static data: variables 
declared outside main, 
does not grow or shrink 

  code: loaded when program 
starts, does not change For now, OS somehow prevents 

accesses between stack and heap 
(gray hash lines).  

code

static data

heap


stack

~ FFFF FFFFhex


~ 0hex


Why would a process need to “grow”? 
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Virtual Memory Problem #1 
  Map every address ⇒ 1 indirection via Page 

Table in memory per virtual address ⇒ 1 
virtual memory accesses =  
2 physical memory accesses ⇒ SLOW! 

  Observation: since locality in pages of data, 
there must be locality in virtual address 
translations of those pages 

  Since small is fast, why not use a small 
cache of virtual to physical address 
translations to make translation fast? 

  For historical reasons, this cache is called a 
Translation Lookaside Buffer, or TLB 
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Translation Look-Aside Buffers (TLBs) 

  TLBs usually small, typically 128 - 256 
entries 

  Like any other cache, the TLB can be direct 
mapped, set associative, or fully associative 

Processor TLB 
Lookup Cache Main 

Memory 

VA PA 
miss 

hit data 
Trans- 
lation 

hit 

miss 

On TLB miss, get page table entry from main memory 
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Fetching data on a memory read 
  Check TLB (input: VPN, output: PPN) 

  hit: fetch translation 
  miss: check page table (in memory) 

  Page table hit: fetch translation 
  Page table miss: page fault, fetch page from disk to memory, return 

translation to TLB 

  Check cache (input: PPN, output: data) 
  hit: return value 
  miss: fetch value from memory, remember it in cache, return value 

Processor TLB 
Lookup 

Cache Main 
Memory 

VA PA 
miss 

hit data 
Trans- 
lation 

hit 

miss 
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Address Translation using TLB 

PPN Offset 
Physical Address 

VPN 
Offset 

Virtual Address 

INDEX 
TLB 

Physical 
Page 

Number 
P. P. N. 

P. P. N. 
... 

TLB Tag 
(Tag used 

just like 
in cache) 

TLB Tag 

Tag Offset INDEX Data Cache 

Tag    Data 
Tag    Data 

TLB Tag 
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Typical TLB Format 
Two ways of looking at it: 

  Valid    Dirty      Ref         Tag                       Cached Data 
                                                                    (What is in the PT) 

  Valid    Dirty      Ref          Tag        Dirty      Access     Physical 
   TLB     TLB         TLB        Page       Rights       Page # 

  TLB just a cache on the page table mappings 
  Dirty Page: since use write back, need to know whether or not 

to write page to disk when replaced 
  Dirty TLB: since we may update the “cached” data (like the 

dirty page bit), need to know if we need to write back to the 
page table. 

  Ref: Used to help calculate LRU on replacement  
  Cleared by OS periodically, then checked to see if page was referenced 
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What if not in TLB? 
  Option 1: Hardware checks page table 

and loads new Page Table Entry into TLB 
  Option 2: Hardware traps to kernel (OS), 

up to kernel to decide what to do 
  MIPS follows Option 2: Hardware knows 

nothing about page table 
  A trap is a synchronous exception in a user 

process, often resulting in the kernel taking 
over and performing some action before 
returning to the program. 
  More about exceptions next lecture 
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What if the data is on disk? 
  We load the page off the disk into a free 

block of memory, using a DMA transfer 
(Direct Memory Access – special 
hardware support to avoid processor)  
  Meantime we switch to some other process 

waiting to be run 
  When the DMA is complete, we get an 

interrupt and update the process's page 
table 
  So when we switch back to the task, the 

desired data will be in memory 
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What if we don’t have enough memory? 

  We chose some other page belonging to a 
program and transfer it onto the disk if it 
is dirty 
  If clean (disk copy is up-to-date),  

just overwrite that data in memory 
  We chose the page to evict based on 

replacement policy (e.g., LRU) 
  And update that program's page table to 

reflect the fact that its memory moved 
somewhere else 

  If continuously swap between disk and 
memory, called Thrashing  
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Question  (1/3) 
  40-bit virtual address, 16 KB page 

  36-bit physical address 

  Number of bits in  
Virtual Page Number/Page offset,  
Physical Page Number/Page offset? 

Page Offset (? bits)
Virtual Page Number (? bits)


Page Offset (? bits)
Physical Page Number (? bits)



1: 22/18 (VPN/PO), 22/14 (PPN/PO)   
2: 24/16, 20/16  
3: 26/14, 22/14  
4: 26/14, 26/10  
5: 28/12, 24/12 
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  40-bit virtual address, 16 KbiB page 

  36-bit physical address 

  Number of bits in  
Virtual Page Number/Page offset,  
Physical Page Number/Page offset? 

(1/3) Answer 

Page Offset (14 bits)
Virtual Page Number (26 bits)


Page Offset (14 bits)
Physical Page Number (22 bits)



1: 22/18 (VPN/PO), 22/14 (PPN/PO)   
2: 24/16, 20/16  
3: 26/14, 22/14  
4: 26/14, 26/10  
5: 28/12, 24/12 
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Question  (2/3): 40b VA, 36b PA 
  2-way assoc. TLB, 512 entries, 40b VA: 

  TLB Entry: Valid bit, TLB Dirty bit, TLB LRU, 
Access Control (say 2 bits),  
Virtual Page Tag, Page Dirty bit, Physical Page 
Number 

  Number of bits in TLB Tag / Index / Entry? 

Page Offset (14 bits)
TLB Index (? bits)
TLB Tag (? bits)


V
 D
 TLB Tag (? bits)
 Access (2 bits)
Physical Page No. (? bits)



1: 12 / 14 / 40 (TLB Tag / Index / Entry) 
2: 14 / 12 / 42  
3: 18 /   8 / 46  
4: 18 /   8 / 60 


D
lru
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(2/3) Answer 
  2-way set-assoc data cache, 256 (28) “sets”, 2 TLB 

entries per set => 8 bit index 

  TLB Entry: Valid bit, TLB Dirty bit, LRU bit, Page 
Dirty bit, Access Control (2 bits),  
Virtual Page Number, Physical Page Number 

Page Offset (14 bits)


Virtual Page Number (26 bits)


TLB Index (8 bits)
TLB Tag (18 bits)


V
 D
 TLB Tag (18 bits)
 Access (2 bits)
Physical Page No. (22 bits)



1: 12 / 14 / 40 (TLB Tag / Index / Entry) 
2: 14 / 12 / 42  
3: 18 /   8 / 46  
4: 18 /   8 / 60 


lru
 D
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Question  (3/3) 
  2-way set-assoc, 64KbiB data cache, 64B block 

  Data Cache Entry: Valid bit, Dirty bit, Cache tag 
+ ? bits of Data 

  Number of bits in Data cache Tag / Index / 
Offset / Entry? 

Block Offset (? bits)

Physical Page Address (36 bits)


Cache Index (? bits)
Cache Tag (? bits)


V
 D
 Cache Tag (? bits)
 Cache Data (? bits)



1: 12 /   9 / 14 / 87 (Tag/Index/Offset/Entry) 
2: 20 / 10 /   6 / 86  
3: 20 / 10 /   6 / 534  
4: 21 /   9 /   6 / 87  
5: 21 /   9 /   6 / 535 
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(3/3) Answer 
  2-way set-assoc data cache, 64KbiB / 64B =1Kbi 

(210) “sets”, 2 entries per sets => 9 bit index 

  Data Cache Entry: Valid bit, Dirty bit, Cache tag 
+ 64 Bytes of Data 

Block Offset (6 bits)

Physical Page Address (36 bits)


Cache Index (9 bits)
Cache Tag (21 bits)


V
 D
 Cache Tag (21 bits)
 Cache Data (64 Bytes = 512 bits)



1: 12 /   9 / 14 / 87 (Tag/Index/Offset/Entry) 
2: 20 / 10 /   6 / 86  
3: 20 / 10 /   6 / 534  
4: 21 /   9 /   6 / 87  
5: 21 /   9 /   6 / 535 
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And in conclusion… 
  Manage memory to disk? Treat as cache 

  Included protection as bonus, now critical 
  Use Page Table of mappings for each user 

vs. tag/data in cache 
  TLB is cache of Virtual ⇒ Physical addr trans 

  Virtual Memory allows protected sharing 
of memory between processes 

  Spatial Locality means Working Set of 
Pages is all that must be in memory for 
process to run fairly well 
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And in conclusion… 
  Virtual memory to Physical Memory 

Translation too slow?  
  Add a cache of Virtual to Physical Address 

Translations, called a TLB 
  Spatial Locality means Working Set of 

Pages is all that must be in memory for 
process to run fairly well 

  Virtual Memory allows protected sharing 
of memory between processes with less 
swapping to disk 
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Bonus slides 
  These are extra slides that used to be 

included in lecture notes, but have been 
moved to this, the “bonus” area to serve 
as a supplement. 

  The slides will appear in the order they 
would have in the normal presentation 
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4 Qs for any Memory Hierarchy 
  Q1: Where can a block be placed? 

  One place (direct mapped) 
  A few places (set associative) 
  Any place (fully associative) 

  Q2: How is a block found? 
  Indexing (as in a direct-mapped cache) 
  Limited search (as in a set-associative cache) 
  Full search (as in a fully associative cache) 
  Separate lookup table (as in a page table) 

  Q3: Which block is replaced on a miss?  
  Least recently used (LRU) 
  Random 

  Q4: How are writes handled? 
  Write through (Level never inconsistent w/lower) 
  Write back (Could be “dirty”, must have dirty bit)  
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Q1: Where block placed in upper level? 

  Block #12 placed in 8 block cache: 
  Fully associative 
  Direct mapped 
  2-way set associative 
  Set Associative Mapping = Block # Mod # of 

Sets 
0 1 2 3 4 5 6 7 Block 

no. 

Fully associative: 
block 12 can go 
anywhere 

0 1 2 3 4 5 6 7 Block 
no. 

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8) 

0 1 2 3 4 5 6 7 Block 
no. 

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4) 

Set 
0 

Set 
1 

Set 
2 

Set 
3 
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  Direct indexing (using index and block 
offset), tag compares, or combination 

  Increasing associativity shrinks index, 
expands tag 

Block 
offset 

Block Address 
Tag Index 

Q2: How is a block found in upper level? 

Set Select 

Data Select 
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 Easy for Direct Mapped 
 Set Associative or Fully Associative: 

  Random 
  LRU (Least Recently Used) 

Miss Rates 
Associativity:   2-way             4-way               8-
way 
Size LRU  Ran  LRU  Ran  LRU  Ran 
16 KB 5.2% 5.7%     4.7% 5.3%      4.4%  5.0% 
64 KB 1.9% 2.0%     1.5% 1.7%      1.4%  1.5% 
256 KB 1.15% 1.17%    1.13%   1.13%   1.12%   1.12% 

Q3: Which block replaced on a miss? 
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Q4: What to do on a write hit? 
  Write-through 

  update the word in cache block and 
corresponding word in memory 

  Write-back 
  update word in cache block 
  allow memory word to be “stale” 
  => add ‘dirty’ bit to each line indicating that 

memory be updated when block is replaced 
  => OS flushes cache before I/O !!! 

  Performance trade-offs? 
  WT: read misses cannot result in writes 
  WB: no writes of repeated writes 
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Why Translation Lookaside Buffer (TLB)? 

  Paging is most popular implementation of 
virtual memory 
(vs. base/bounds) 

  Every paged virtual memory access must 
be checked against Entry of Page Table in 
memory to provide protection / 
indirection 

  Cache of Page Table Entries (TLB) makes 
address translation possible without 
memory access in common case to make 
fast 
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Bonus slide: Virtual Memory Overview (1/3) 

  User program view of memory: 
  Contiguous 
  Start from some set address 
  Infinitely large 
  Is the only running program 

  Reality: 
  Non-contiguous 
  Start wherever available memory is 
  Finite size 
  Many programs running at a time 
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Bonus slide: Virtual Memory Overview (2/3) 

  Virtual memory provides: 
  illusion of contiguous memory 
  all programs starting at same set address 
  illusion of ~ infinite memory  

(232 or 264 bytes) 
  protection 
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Bonus slide: Virtual Memory Overview (3/3) 

  Implementation: 
  Divide memory into “chunks” (pages) 
  Operating system controls page table that 

maps virtual addresses into physical 
addresses 

  Think of memory as a cache for disk 
  TLB is a cache for the page table 
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Address Map, Mathematically 
V = {0, 1, . . . , n - 1}   virtual address space (n > m) 
M = {0, 1, . . . , m - 1}  physical address space 
MAP:  V -->  M  U  {θ}  address mapping function 

MAP(a)  =  a'  if data at virtual address a  
is present in physical address a'  and  a' in M 
= θ if data at virtual address a is not present in M 

Processor 
Name Space V a 

Addr Trans 
Mechanism a 

Main 
Memory 

a' 
physical  
address 

  Disk    

OS performs 
this transfer 

OS fault 
handler 

0 

page fault 


