
CS61C L11 Caches (1) Huddleston, Summer 2009 © UCB

CS61CL : Machine Structures

Lecture #11 – Caches

2009-07-29

Jeremy Huddleston

CS61C L11 Caches (2) Huddleston, Summer 2009 © UCB

Review : Pipelining

!! Pipeline challenge is hazards

"! Forwarding helps w/many data hazards

"! Delayed branch helps with control hazard in

our 5 stage pipeline

"! Data hazards w/Loads ! Load Delay Slot

!! Interlock ! “smart” CPU has HW to detect if

conflict with inst following load, if so it stalls

!! More aggressive performance (discussed

in section next week)

"! Superscalar (parallelism)

"! Out-of-order execution

CS61C L11 Caches (3) Huddleston, Summer 2009 © UCB

The Big Picture

 Processor!
 (active)!

Computer!

Control!
(“brain”)!

Datapath!
(“brawn”)!

Memory!
(passive)!
(where "

programs, "
data live "

when"
running)!

Devices!

Input!

Output!

Keyboard, "
Mouse"

Display, #
Printer"

Disk,!
Network "

CS61C L11 Caches (4) Huddleston, Summer 2009 © UCB

Memory Hierarchy

!! Processor

"! holds data in register file (~100 Bytes)

"! Registers accessed on nanosecond timescale

!! Memory (we’ll call “main memory”)

"! More capacity than registers (~Gbytes)

"! Access time ~50-100 ns

"! Hundreds of clock cycles per memory

access?!

!! Disk

"! HUGE capacity (virtually limitless)

"! VERY slow: runs ~milliseconds

I.e., storage in

computer systems

CS61C L11 Caches (5) Huddleston, Summer 2009 © UCB

Motivation: Why We Use Caches (written $)

!! 1989 first Intel CPU (80486) with cache on chip

!! 1995 first Intel CPU (Pentium Pro) with two

levels of cache on chip
!Proc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e

rf
o

rm
a

n
c

e

CS61C L11 Caches (6) Huddleston, Summer 2009 © UCB

Memory Caching

!! Mismatch between processor and

memory speeds leads us to add a new

level: a memory cache

!! Implemented with same IC processing

technology as the CPU (usually

integrated on same chip): faster but more

expensive than DRAM memory.

!! Cache is a copy of a subset of main

memory.

!! Most processors have separate caches

for instructions and data.

CS61C L11 Caches (7) Huddleston, Summer 2009 © UCB

Memory Hierarchy

Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Higher

Lower

Levels in

memory

hierarchy

As we move to deeper levels the latency
goes up and price per bit goes down.

CS61C L11 Caches (8) Huddleston, Summer 2009 © UCB

Memory Hierarchy

!! If level closer to Processor, it is:

"! Smaller

"! Faster

"! More expensive

"! subset of lower levels (contains most recently

used data)

!! Lowest Level (usually disk) contains all

available data (does it go beyond the disk?)

!! Memory Hierarchy presents the processor

with the illusion of a very large & fast

memory

CS61C L11 Caches (9) Huddleston, Summer 2009 © UCB

Memory Hierarchy Analogy: Library (1/2)

!! You’re writing a term paper (Processor) at

a table in Doe

!! Doe Library is equivalent to disk

"! essentially limitless capacity

"! very slow to retrieve a book

!! Table is main memory

"! smaller capacity: means you must return book

when table fills up

"! easier and faster to find a book there once

you’ve already retrieved it

CS61C L11 Caches (10) Huddleston, Summer 2009 © UCB

Memory Hierarchy Analogy: Library (2/2)

!! Open books on table are cache

"! smaller capacity: can have very few open

books fit on table; again, when table fills up,

you must close a book

"! much, much faster to retrieve data

!! Illusion created: whole library open on

the tabletop

"! Keep as many recently used books open on

table as possible since likely to use again

"! Also keep as many books on table as

possible, since faster than going to library

CS61C L11 Caches (11) Huddleston, Summer 2009 © UCB

Memory Hierarchy Basis

!! Cache contains copies of data in memory

that are being used.

!! Memory contains copies of data on disk

that are being used.

!! Caches work on the principles of

temporal and spatial locality.

"! Temporal Locality: if we use it now, chances

are we’ll want to use it again soon.

"! Spatial Locality: if we use a piece of memory,

chances are we’ll use the neighboring pieces

soon.

CS61C L11 Caches (12) Huddleston, Summer 2009 © UCB

Cache Design

!! How do we organize cache?

!! Where does each memory address map

to?

"! (Remember that cache is subset of memory,

so multiple memory addresses map to the

same cache location.)

!! How do we know which elements are in

cache?

!! How do we quickly locate them?

CS61C L11 Caches (13) Huddleston, Summer 2009 © UCB

Administrivia

!! Project 4 (on Caches) will be in

optional groups of two.

!! Jeremy’s OH today canceled

"! I will have OH on Friday, time will be posted

on the newsgroup

!! HW7 due tomorrow

"! You MUST have a discussion with your TA in

lab tomorrow for credit

CS61C L11 Caches (14) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache (1/4)

!! In a direct-mapped cache, each memory

address is associated with one possible

block within the cache

"! Therefore, we only need to look in a single

location in the cache for the data if it exists in

the cache

"! Block is the unit of transfer between cache

and memory

CS61C L11 Caches (15) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache (2/4)

 Cache Location 0 can be

 occupied by data from:

"! Memory location 0, 4, 8, ...

"! 4 blocks ! any memory

location that is multiple of 4

Memory!
Memory "

Address!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
A!
B!
C!
D!
E!
F!

4 Byte Direct !

Mapped Cache!

Cache !

Index!
0!
1!
2!
3!

What if we wanted a block

to be bigger than one byte?

Block size = 1 byte!

CS61C L11 Caches (16) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache (3/4)

!! When we ask for a byte, the
system finds out the right block,
and loads it all!
"! How does it know right block?
"! How do we select the byte?

!! E.g., Mem address 11101?
!! How does it know WHICH

colored block it originated from?
"! What do you do at baggage claim?

Memory!
Memory "

Address!

0!
2!
4!
6!
8!
A!
C!
E!

10!
12!
14!
16!
18!
1A!
1C!
1E!

8 Byte Direct !

Mapped Cache!

Cache !

Index!
0!
1!
2!
3!

0!1!
2!3!

etc!
Block size = 2 bytes!

4!5!
6!7!
8!9!

CS61C L11 Caches (17) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache (4/4)

!! What should go in the tag?
"! Do we need the entire address?

!! What do all these tags have in
common?

"! What did we do with the immediate
when we were branch addressing,
always count by bytes?

!! Why not count by cache #?
"! It’s useful to draw memory with the

same width as the block size

Memory!
(addresses shown)!

Memory Address!

0!
2!
4!
6!
8!
A!
C!
E!

10!
12!
14!
16!
18!
1A!
1C!

1E!

8 Byte Direct !

Mapped Cache w/Tag!!

Cache !

Index!
0!
1!
2!
3!

0!1!
2!3!

etc!

 Tag Data!
(Block size = 2 bytes)!

4!5!
6!7!
8!9!

8!
2!

1E!
14!0!

1!

2!

3!

Cache#!

1!
0!

3!
2!

CS61C L11 Caches (18) Huddleston, Summer 2009 © UCB

!! Since multiple memory addresses map to

same cache index, how do we tell which

one is in there?

!! What if we have a block size > 1 byte?

!! Answer: divide memory address into

three fields

ttttttttttttttttt iiiiiiiiii oooo

 tag index byte
to check to offset
if have select within
correct block block block

Issues with Direct-Mapped

CS61C L11 Caches (19) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache Terminology

!! All fields are read as unsigned integers.

!! Index

"! specifies the cache index (which “row”/block

of the cache we should look in)

!! Offset

"! once we’ve found correct block, specifies

which byte within the block we want

!! Tag

"! the remaining bits after offset and index are

determined; these are used to distinguish

between all the memory addresses that map

to the same location
CS61C L11 Caches (20) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache Example (1/3)

!! Suppose we have a 8B of data in a direct-

mapped cache with 2 byte blocks

"! Sound familiar?

!! Determine the size of the tag, index and

offset fields if we’re using a 32-bit

architecture

!! Offset

"! need to specify correct byte within a block

"! block contains 2 bytes

 = 21 bytes

"! need 1 bit to specify correct byte

CS61C L11 Caches (21) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache Example (2/3)

!! Index: (~index into an “array of blocks”)

"! need to specify correct block in cache

"! cache contains 8 B = 23 bytes

"! block contains 2 B = 21 bytes

"! # blocks/cache

 = bytes/cache

 bytes/block

 = 23 bytes/cache

 21 bytes/block

 = 22 blocks/cache

"! need 2 bits to specify this many blocks

CS61C L11 Caches (22) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache Example (3/3)

!! Tag: use remaining bits as tag

"! tag length = addr length - offset - index

 = 32 - 1 - 2 bits

 = 29 bits

"! so tag is leftmost 29 bits of memory address

!! Why not full 32 bit address as tag?

"! All bytes within block need same address (4b)

"! Index must be same for every address within

a block, so it’s redundant in tag check, thus

can leave off to save memory (here 10 bits)

CS61C L11 Caches (23) Huddleston, Summer 2009 © UCB

Caching Terminology

!! When reading memory, 3 things can

happen:

"! cache hit:

cache block is valid and contains proper

address, so read desired word

"! cache miss:

nothing in cache in appropriate block, so

fetch from memory

"! cache miss, block replacement:

wrong data is in cache at appropriate block,

so discard it and fetch desired data from

memory (cache always copy)

CS61C L11 Caches (24) Huddleston, Summer 2009 © UCB

16 KB Direct Mapped Cache, 16B blocks

!! Valid bit: determines whether anything is stored
in that row (when computer initially turned on, all
entries invalid)

...!

Valid!
Tag! 0xc-f! 0x8-b! 0x4-7! 0x0-3!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

Index!
0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

CS61C L11 Caches (25) Huddleston, Summer 2009 © UCB

1. Read 0x00000014

...!

Valid!
Tag!

0!
1
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

CS61C L11 Caches (26) Huddleston, Summer 2009 © UCB

So we read block 1 (0000000001)

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

CS61C L11 Caches (27) Huddleston, Summer 2009 © UCB

No valid data

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

CS61C L11 Caches (28) Huddleston, Summer 2009 © UCB

So load that data into cache, setting tag, valid

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0! d! c! b! a!

!! 000000000000000000 0000000001 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

CS61C L11 Caches (29) Huddleston, Summer 2009 © UCB

Read from cache at offset, return word b

!! 000000000000000000 0000000001 0100

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (30) Huddleston, Summer 2009 © UCB

2. Read 0x0000001C = 0…00 0..001 1100

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (31) Huddleston, Summer 2009 © UCB

Index is Valid

...!

Valid!
Tag!

0!
1
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (32) Huddleston, Summer 2009 © UCB

Index valid, Tag Matches

...!

Valid!
Tag!

0!
1
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (33) Huddleston, Summer 2009 © UCB

Index Valid, Tag Matches, return d

...!

Valid!
Tag!

0!
1
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (34) Huddleston, Summer 2009 © UCB

3. Read 0x00000034 = 0…00 0..011 0100

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (35) Huddleston, Summer 2009 © UCB

So read block 3

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (36) Huddleston, Summer 2009 © UCB

No valid data

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

CS61C L11 Caches (37) Huddleston, Summer 2009 © UCB

Load that cache block, return word f

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100

1! 0! h! g! f! e!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

d! c! b! a!

0xc-f! 0x8-b! 0x4-7! 0x0-3!

CS61C L11 Caches (38) Huddleston, Summer 2009 © UCB

4. Read 0x00008014 = 0…10 0..001 0100

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!

CS61C L11 Caches (39) Huddleston, Summer 2009 © UCB

So read Cache Block 1, Data is Valid

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!

CS61C L11 Caches (40) Huddleston, Summer 2009 © UCB

Cache Block 1 Tag does not match (0 != 2)

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!

CS61C L11 Caches (41) Huddleston, Summer 2009 © UCB

Miss, so replace block 1 with new data & tag

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 2! l! k! j! i!

!! 000000000000000010 0000000001 0100

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

h! g! f! e!

CS61C L11 Caches (42) Huddleston, Summer 2009 © UCB

And return word J

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 2!

!! 000000000000000010 0000000001 0100

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

l! k! j! i!

0xc-f! 0x8-b! 0x4-7! 0x0-3!

h! g! f! e!

CS61C L11 Caches (43) Huddleston, Summer 2009 © UCB

What to do on a write hit?

!! Write-through

"! update the word in cache block and

corresponding word in memory

!! Write-back

"! update word in cache block

"! allow memory word to be “stale”

"! ! add ‘dirty’ bit to each block indicating that

memory needs to be updated when block is

replaced

"! ! OS flushes cache before I/O…

!! Performance trade-offs?

CS61C L11 Caches (44) Huddleston, Summer 2009 © UCB

Types of Cache Misses (1/2)

!! “Three Cs” Model of Misses

!! 1st C: Compulsory Misses

"! occur when a program is first started

"! cache does not contain any of that program’s

data yet, so misses are bound to occur

"! can’t be avoided easily, so won’t focus on

these in this course

CS61C L11 Caches (45) Huddleston, Summer 2009 © UCB

Types of Cache Misses (2/2)

!! 2nd C: Conflict Misses

"! miss that occurs because two distinct memory

addresses map to the same cache location

"! two blocks (which happen to map to the same

location) can keep overwriting each other

"! big problem in direct-mapped caches

"! how do we lessen the effect of these?

!! Dealing with Conflict Misses

"! Solution 1: Make the cache size bigger

!! Fails at some point

"! Solution 2: Multiple distinct blocks can fit in the

same cache Index?

CS61C L11 Caches (46) Huddleston, Summer 2009 © UCB

Fully Associative Cache (1/3)

!! Memory address fields:

"! Tag: same as before

"! Offset: same as before

"! Index: non-existant

!! What does this mean?

"! no “rows”: any block can go anywhere in the

cache

"! must compare with all tags in entire cache to

see if data is there

CS61C L11 Caches (47) Huddleston, Summer 2009 © UCB

Fully Associative Cache (2/3)

!! Fully Associative Cache (e.g., 32 B block)

"! compare tags in parallel

Byte Offset!

:!

 Cache Data!

B 0!

0!4!31!

:!

Cache Tag (27 bits long)!

Valid!

:!

B 1!B 31! :!

 Cache Tag!
=!

=!

=!

=!

=!

:!

CS61C L11 Caches (48) Huddleston, Summer 2009 © UCB

Fully Associative Cache (3/3)

!! Benefit of Fully Assoc Cache

"! No Conflict Misses (since data can go

anywhere)

!! Drawbacks of Fully Assoc Cache

"! Need hardware comparator for every single

entry: if we have a 64KB of data in cache with

4B entries, we need 16K comparators:

infeasible

CS61C L11 Caches (49) Huddleston, Summer 2009 © UCB

Final Type of Cache Miss

!! 3rd C: Capacity Misses

"! miss that occurs because the cache has a

limited size

"! miss that would not occur if we increase the

size of the cache

"! sketchy definition, so just get the general idea

!! This is the primary type of miss for Fully

Associative caches.

CS61C L11 Caches (50) Huddleston, Summer 2009 © UCB

N-Way Set Associative Cache (1/3)

!! Memory address fields:

"! Tag: same as before

"! Offset: same as before

"! Index: points us to the correct “row” (called a

set in this case)

!! So what’s the difference?

"! each set contains multiple blocks

"! once we’ve found correct set, must compare

with all tags in that set to find our data

CS61C L11 Caches (51) Huddleston, Summer 2009 © UCB

Associative Cache Example

!! Here’s a simple 2-way

set associative

cache.

Memory!
Memory "

Address!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
A!
B!
C!
D!
E!
F!

Cache !

Index!
0!
0!
1!
1!

CS61C L11 Caches (52) Huddleston, Summer 2009 © UCB

N-Way Set Associative Cache (2/3)

!! Basic Idea

"! cache is direct-mapped w/respect to sets

"! each set is fully associative with N blocks in it

!! Given memory address:

"! Find correct set using Index value.

"! Compare Tag with all Tag values in the

determined set.

"! If a match occurs, hit!, otherwise a miss.

"! Finally, use the offset field as usual to find the

desired data within the block.

CS61C L11 Caches (53) Huddleston, Summer 2009 © UCB

N-Way Set Associative Cache (3/3)

!! What’s so great about this?

"! even a 2-way set assoc cache avoids a lot of

conflict misses

"! hardware cost isn’t that bad: only need N

comparators

!! In fact, for a cache with M blocks,

"! it’s Direct-Mapped if it’s 1-way set assoc

"! it’s Fully Assoc if it’s M-way set assoc

"! so these two are just special cases of the

more general set associative design

CS61C L11 Caches (54) Huddleston, Summer 2009 © UCB

4-Way Set Associative Cache Circuit

tag"
index"

CS61C L11 Caches (55) Huddleston, Summer 2009 © UCB

Block Replacement Policy

!! Direct-Mapped Cache

"! index completely specifies position which position a block

can go in on a miss

!! N-Way Set Assoc

"! index specifies a set, but block can occupy any position

within the set on a miss

!! Fully Associative

"! block can be written into any position

!! Question: if we have the choice, where should we

write an incoming block?

"! If there are any locations with valid bit off (empty), then

usually write the new block into the first one.

"! If all possible locations already have a valid block, we must

pick a replacement policy: rule by which we determine

which block gets “cached out” on a miss.
CS61C L11 Caches (56) Huddleston, Summer 2009 © UCB

Block Replacement Policy: LRU

!! LRU (Least Recently Used)

"! Idea: cache out block which has been

accessed (read or write) least recently

"! Pro: temporal locality ! recent past use

implies likely future use: in fact, this is a very

effective policy

"! Con: with 2-way set assoc, easy to keep track

(one LRU bit); with 4-way or greater, requires

complicated hardware and much time to keep

track of this

CS61C L11 Caches (57) Huddleston, Summer 2009 © UCB

Block Replacement Example

!! We have a 2-way set associative cache

with a four word total capacity and one

word blocks. We perform the following

word accesses (ignore bytes for this

problem):

 0, 2, 0, 1, 4, 0, 2, 3, 5, 4

!! How many hits and how many misses will

there be for the LRU block replacement

policy?

CS61C L11 Caches (58) Huddleston, Summer 2009 © UCB

Block Replacement Example: LRU

Addresses 0, 2, 0, 1, 4, 0, ...

0!
lru!

2!

1!
lru!

loc 0! loc 1!

set 0!

set 1!

0! 2!
lru!set 0!

set 1!

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)!

 0: hit!

 1: miss, bring into set 1 (loc 0)!

 4: miss, bring into set 0 (loc 1, replace 2)!

 0: hit!

0!set 0!

set 1!

lru!lru!

0! 2!set 0!

set 1!

lru! lru!

set 0!

set 1!

0!

1!
lru!

lru!
2!4!lru!

set 0!

set 1!

0! 4!

1!
lru!

lru! lru!

CS61C L11 Caches (59) Huddleston, Summer 2009 © UCB

Big Idea

!! How to choose between associativity,

block size, replacement & write policy?

!! Design against a performance model

"! Minimize: Average Memory Access Time

 = Hit Time

 + Miss Penalty x Miss Rate

"! influenced by technology & program behavior

!! Create the illusion of a memory that is

large, cheap, and fast - on average

!! How can we improve miss penalty?

CS61C L11 Caches (60) Huddleston, Summer 2009 © UCB

Improving Miss Penalty

!! When caches first became popular, Miss

Penalty ~ 10 processor clock cycles

!! Today 2400 MHz Processor (0.4 ns per

clock cycle) and 80 ns to go to DRAM

! 200 processor clock cycles!

Proc" $2"

D
R

A
M
"

$"

MEM"

Solution: another cache between memory and

the processor cache: Second Level (L2) Cache

CS61C L11 Caches (61) Huddleston, Summer 2009 © UCB

And in Conclusion…

!! We would like to have the capacity of disk

at the speed of the processor:

unfortunately this is not feasible.

!! So we create a memory hierarchy:

"! each successively lower level contains “most

used” data from next higher level

"! exploits temporal & spatial locality

"! do the common case fast, worry less about

the exceptions

(design principle of MIPS)

!! Locality of reference is a Big Idea

CS61C L11 Caches (62) Huddleston, Summer 2009 © UCB

And in Conclusion…

!! Mechanism for transparent movement of

data among levels of a storage hierarchy
"! set of address/value bindings
"! address ! index to set of candidates
"! compare desired address with tag
"! service hit or miss

!! load new block and binding on miss

Valid!
Tag! 0xc-f! 0x8-b! 0x4-7! 0x0-3!

0!
1!
2!
3!
...!

1! 0! d! c! b! a!

000000000000000000 0000000001 1100!
address: tag index offset

CS61C L11 Caches (63) Huddleston, Summer 2009 © UCB

And in Conclusion…

!! We’ve discussed memory caching in detail. Caching in

general shows up over and over in computer systems

"! Filesystem cache, Web page cache, Game databases / tablebases,

Software memoization, Others?

!! Big idea: if something is expensive but we want to do it

repeatedly, do it once and cache the result.

!! Cache design choices:

"! Size of cache: speed v. capacity

"! Block size (i.e., cache aspect ratio)

"! Write Policy (Write through v. write back

"! Associativity choice of N (direct-mapped v. set v. fully associative)

"! Block replacement policy

"! 2nd level cache?

"! 3rd level cache?

!! Use performance model to pick between choices, depending

on programs, technology, budget, ...

CS61C L11 Caches (64) Huddleston, Summer 2009 © UCB

Bonus slides

!! These are extra slides that used to be

included in lecture notes, but have been

moved to this, the “bonus” area to serve

as a supplement.

!! The slides will appear in the order they

would have in the normal presentation

CS61C L11 Caches (65) Huddleston, Summer 2009 © UCB

AREA (cache size, B)

= HEIGHT (# of blocks)

 * WIDTH (size of one block, B/block)

WIDTH

(size of one block, B/block)

HEIGHT

(# of blocks)
AREA

(cache size,

B)

2(H+W) = 2H * 2W

Tag Index Offset

TIO The great cache mnemonic

CS61C L11 Caches (66) Huddleston, Summer 2009 © UCB

!! Ex.: 16KB of data,

direct-mapped,

4 word blocks

"! Can you work out

height, width,

area?

!! Read 4 addresses
1. # 0x00000014

2. # 0x0000001C

3. # 0x00000034

4. # 0x00008014

!! Memory vals here:

Address (hex) Value of Word
Memory

00000010!
00000014
00000018
0000001C

a!
b!
c!
d!

...! ...!

00000030!
00000034
00000038
0000003C

e!
f!
g!
h!

00008010!
00008014
00008018
0000801C

i!
j!
k!
l!

...! ...!

...! ...!

...! ...!

Accessing data in a direct mapped cache

CS61C L11 Caches (67) Huddleston, Summer 2009 © UCB

!! 4 Addresses:

"! 0x00000014, 0x0000001C,

0x00000034, 0x00008014

!! 4 Addresses divided (for convenience)

into Tag, Index, Byte Offset fields

000000000000000000 0000000001 0100

000000000000000000 0000000001 1100

000000000000000000 0000000011 0100

000000000000000010 0000000001 0100
 Tag Index Offset

Accessing data in a direct mapped cache

CS61C L11 Caches (68) Huddleston, Summer 2009 © UCB

Do an example yourself. What happens?
!! Chose from: Cache: Hit, Miss, Miss w. replace

 Values returned: a ,b, c, d, e, ..., k, l

!! Read address 0x00000030 ?
000000000000000000 0000000011 0000

!! Read address 0x0000001c ?

 000000000000000000 0000000001 1100

...!

Valid!
Tag! 0x0-3! 0x4-7! 0x8-b! 0xc-f!

0!
1!
2!
3!
4!
5!
6!
7!
...!

1! 2! l! k! j! i!

1! 0! h! g! f! e!

Index!
0"

0"

0"
0"
0"

0"

Cache!

CS61C L11 Caches (69) Huddleston, Summer 2009 © UCB

Answers

!! 0x00000030 a hit

Index = 3, Tag matches,

Offset = 0, value = e

!! 0x0000001c a miss

Index = 1, Tag mismatch,

so replace from memory,

Offset = 0xc, value = d

!! Since reads, values

must = memory values

whether or not cached:

"! 0x00000030 = e

"! 0x0000001c = d

Address (hex) Value of Word
Memory

00000010!
00000014
00000018
0000001C

a!
b!
c!
d!

...! ...!

00000030!
00000034
00000038
0000003C

e!
f!
g!
h!

00008010!
00008014
00008018
0000801C

i!
j!
k!
l!

...! ...!

...! ...!

...! ...!

CS61C L11 Caches (70) Huddleston, Summer 2009 © UCB

Block Size Tradeoff (1/3)

!! Benefits of Larger Block Size

"! Spatial Locality: if we access a given word,

we’re likely to access other nearby words

soon

"! Very applicable with Stored-Program Concept:

if we execute a given instruction, it’s likely

that we’ll execute the next few as well

"! Works nicely in sequential array accesses too

CS61C L11 Caches (71) Huddleston, Summer 2009 © UCB

Block Size Tradeoff (2/3)

!! Drawbacks of Larger Block Size

"! Larger block size means larger miss penalty

!! on a miss, takes longer time to load a new block

from next level

"! If block size is too big relative to cache size,

then there are too few blocks

!! Result: miss rate goes up

!! In general, minimize

Average Memory Access Time (AMAT)

 = Hit Time

 + Miss Penalty x Miss Rate

CS61C L11 Caches (72) Huddleston, Summer 2009 © UCB

Block Size Tradeoff (3/3)

!! Hit Time

"! time to find and retrieve data from current

level cache

!! Miss Penalty

"! average time to retrieve data on a current level

miss (includes the possibility of misses on

successive levels of memory hierarchy)

!! Hit Rate

"! % of requests that are found in current level

cache

!! Miss Rate

"! 1 - Hit Rate

CS61C L11 Caches (73) Huddleston, Summer 2009 © UCB

Extreme Example: One Big Block

!! Cache Size = 4 bytes Block Size = 4

bytes

"! Only ONE entry (row) in the cache!

!! If item accessed, likely accessed again

soon

"! But unlikely will be accessed again

immediately!

!! The next access will likely to be a miss

again

"! Continually loading data into the cache but

discard data (force out) before use it again

 Cache Data!Valid Bit!
B 0!B 1!B 3!

Tag!
B 2!

CS61C L11 Caches (74) Huddleston, Summer 2009 © UCB

Block Size Tradeoff Conclusions

Miss
Penalty

Block Size!

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size!

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size!

CS61C L11 Caches (75) Huddleston, Summer 2009 © UCB

Analyzing Multi-level cache hierarchy

Proc" $2"

D
R

A
M
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"

Avg Mem Access Time = !
!L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"

L1 Miss Penalty = !
!L2 Hit Time + L2 Miss Rate * L2 Miss Penalty!

Avg Mem Access Time = !
!L1 Hit Time + L1 Miss Rate * "
!(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)!

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"

CS61C L11 Caches (76) Huddleston, Summer 2009 © UCB

Example

!! Assume

"! Hit Time = 1 cycle

"! Miss rate = 5%

"! Miss penalty = 20 cycles

"! Calculate AMAT…

!! Avg mem access time

= 1 + 0.05 x 20

= 1 + 1 cycles

= 2 cycles

CS61C L11 Caches (77) Huddleston, Summer 2009 © UCB

Ways to reduce miss rate

!! Larger cache

"! limited by cost and technology

"! hit time of first level cache < cycle time

(bigger caches are slower)

!! More places in the cache to put each

block of memory – associativity

"! fully-associative

!! any block any line

"! N-way set associated

!! N places for each block

!! direct map: N=1

CS61C L11 Caches (78) Huddleston, Summer 2009 © UCB

Typical Scale

!! L1

"! size: tens of KB

"! hit time: complete in one clock cycle

"! miss rates: 1-5%

!! L2:

"! size: hundreds of KB

"! hit time: few clock cycles

"! miss rates: 10-20%

!! L2 miss rate is fraction of L1 misses that

also miss in L2

"! why so high?

CS61C L11 Caches (79) Huddleston, Summer 2009 © UCB

Example: with L2 cache

!! Assume

"! L1 Hit Time = 1 cycle

"! L1 Miss rate = 5%

"! L2 Hit Time = 5 cycles

"! L2 Miss rate = 15% (% L1 misses that miss)

"! L2 Miss Penalty = 200 cycles

!! L1 miss penalty = 5 + 0.15 * 200 = 35

!! Avg mem access time = 1 + 0.05 x 35

 = 2.75 cycles

CS61C L11 Caches (80) Huddleston, Summer 2009 © UCB

Example: without L2 cache

!! Assume

"! L1 Hit Time = 1 cycle

"! L1 Miss rate = 5%

"! L1 Miss Penalty = 200 cycles

!! Avg mem access time = 1 + 0.05 x 200

 = 11 cycles

!! 4x faster with L2 cache! (2.75 vs. 11)

!! Cache

"! 32 KB Instructions and 32

KB Data L1 caches

"! External L2 Cache
interface with integrated

controller and cache

tags, supports up to 1

MByte external L2 cache

"! Dual Memory

Management Units (MMU)

with Translation

Lookaside Buffers (TLB)

!! Pipelining

"! Superscalar (3 inst/cycle)

"! 6 execution units (2

integer and 1 double

precision IEEE floating

An actual CPU – Early PowerPC

CS61C L11 Caches (82) Huddleston, Summer 2009 © UCB

An Actual CPU – Pentium M

32KB I$!

32KB D$!

