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Review : Pipelining

= Pipeline challenge is hazards
= Forwarding helps w/many data hazards
= Delayed branch helps with control hazard in
our 5 stage pipeline
= Data hazards w/Loads => Load Delay Slot
= Interlock = “smart” CPU has HW to detect if
conflict with inst following load, if so it stalls
= More aggressive performance (discussed
in section next week)
= Superscalar (parallelism)
= Out-of-order execution
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The Big Picture
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lLe., storage in
computer systems

Memory Hierarchy

* Processor

= holds data in register file (~100 Bytes)

= Registers accessed on nanosecond timescale
= Memory (we’ll call “main memory”)

= More capacity than registers (~Gbytes)

= Access time ~50-100 ns

o Hundreds of clock cycles per memory
access?!

= Disk
o HUGE capacity (virtually limitless)
= VERY slow: runs ~milliseconds
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Motivation: Why We Use Caches (written $)

= 1989 first Intel CPU (80486) with cache on chip
= 1995 first Intel CPU (Pentium Pro) with two

levels of cache on chip
000 iR

" uProc
60%l/yr.

Processor-Memory
Performance Gap:
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Memory Caching

= Mismatch between processor and
memory speeds leads us to add a new
level: a memory cache

» Implemented with same IC processing
technology as the CPU (usually
integrated on same chip): faster but more
expensive than DRAM memory.

= Cache is a copy of a subset of main
memory.

= Most processors have separate caches
for instructions and data.

Memory Hierarchy
Processor
; Increasing
Higher Distance
Levels in from Proc.,
memory Level 2 De‘;’;::(',"g

hierarchV Level 3

Lowey” . L
/ Level n \

Size of memory at each level
As we move to deeper levels the latency
Q goes up and price per bit goes down.
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Memory Hierarchy

= |f level closer to Processor, it is:
= Smaller
= Faster
More expensive
subset of lower levels (contains most recently
used data)
= Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)
= Memory Hierarchy presents the processor
with the illusion of a very large & fast
memory

o

o
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Memory Hierarchy Analogy: Library (1/2)

= You’re writing a term paper (Processor) at
a table in Doe
= Doe Library is equivalent to disk
o essentially limitless capacity
= very slow to retrieve a book
= Table is main memory
= smaller capacity: means you must return book
when table fills up
= easier and faster to find a book there once
you’ve already retrieved it
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Memory Hierarchy Analogy: Library (2/2)

= Open books on table are cache

= smaller capacity: can have very few open
books fit on table; again, when table fills up,
you must close a book

= much, much faster to retrieve data
= |llusion created: whole library open on
the tabletop
= Keep as many recently used books open on
table as possible since likely to use again

= Also keep as many books on table as
possible, since faster than going to library
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Memory Hierarchy Basis

= Cache contains copies of data in memory
that are being used.

= Memory contains copies of data on disk
that are being used.

= Caches work on the principles of
temporal and spatial locality.

= Temporal Locality: if we use it now, chances
are we’ll want to use it again soon.

o Spatial Locality: if we use a piece of memory,
chances are we’ll use the neighboring pieces
soon.
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Administrivia

= Project 4 (on Caches) will be in
optional groups of two.
= Jeremy’s OH today canceled

= | will have OH on Friday, time will be posted
on the newsgroup

= HW7 due tomorrow

= You MUST have a discussion with your TA in
lab tomorrow for credit
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Direct-Mapped Cache (1/4)

= In a direct-mapped cache, each memory
address is associated with one possible
block within the cache
o Therefore, we only need to look in a single
location in the cache for the data if it exists in
the cache

= Block is the unit of transfer between cache
and memory
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Direct-Mapped Cache (3/4)

Mermory Cache 8 Byte Direct
Address Memory Indf}x Mapped Cache
0 7 1
2 2 2
4 —,I; 4_ 3
g ) §L Block size = 2 bytes
A etC
£ e ot i ook
1]:) 3hd foaéls ftail ‘9 ’
12 = How does it know right block?
14 = How do we select the byte?
16 » E.g., Mem address 11101?
18 = How does it know WHICH
1 colored block it originated from?
1c = What do you do at baggage claim?
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Direct-Mapped Cache (4/4)

Memory Address Cache 8 Byte Direct

Memory Index Mapped Cache w/Tag!
(addr n) § 1

2
4
i3 )

1 S =]

Tag Data
(Block size = 2 bytes)

hat should go in the tag?
= Do we need the entire address?

= What do all these tags have in
common?

= What did we do with the immediate
when we were branch addressing,
always count by bytes?
= Why not count by cache #?
3 o It’s useful to draw memory with the
same width as the block size

Cache#

[
!

SEAP RS

e e L 3
=)

N
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Cache Design

= How do we organize cache?
= Where does each memory address map
to?

= (Remember that cache is subset of memory,
so multiple memory addresses map to the
same cache location.)

= How do we know which elements are in
cache?

= How do we quickly locate them?
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Direct-Mapped Cache (2/4)

Memer y Cache 4 Byte Direct
Address Memory Ind%x Mapped Cache
1
2
3

Block size = 1 byte

Cache Location 0 can be
occupied by data from:
= Memory location 0, 4, 8, ...
= 4 blocks = any memory
location that is multiple of 4
What if we wanted a block
to be bigger than one byte?
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Issues with Direct-Mapped

= Since multiple memory addresses map to
same cache index, how do we tell which
one is in there?

= What if we have a block size > 1 byte?

= Answer: divide memory address into
three fields

tag index byte
to check to offset
if have select within

Q correct block block block
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Direct-Mapped Cache Terminology

= All fields are read as unsigned integers.
= Index

= specifies the cache index (which “row”/block
of the cache we should look in)

= Offset

= once we’ve found correct block, specifies
which byte within the block we want

» Tag
= the remaining bits after offset and index are
determined; these are used to distinguish

between all the memory addresses that map
Q to the same location
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Direct-Mapped Cache Example (1/3)

= Suppose we have a 8B of data in a direct-
mapped cache with 2 byte blocks
= Sound familiar?

= Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture

= Offset
= need to specify correct byte within a block
= block contains 2 bytes

=21 bytes
w = need 1 bit to specify correct byte
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Direct-Mapped Cache Example (3/3)

= Tag: use remaining bits as tag
= tag length = addr length - offset - index
=32-1-2bits
= 29 bits
= so tag is leftmost 29 bits of memory address
= Why not full 32 bit address as tag?
= All bytes within block need same address (4b)

s Index must be same for every address within
a block, so it’s redundant in tag check, thus
can leave off to save memory (here 10 bits)
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Caching Terminology

= When reading memory, 3 things can
happen:
= cache hit:
cache block is valid and contains proper
address, so read desired word
cache miss:
nothing in cache in appropriate block, so
fetch from memory
cache miss, block replacement:
wrong data is in cache at appropriate block,
so discard it and fetch desired data from

o

o

Z memory (cache always copy)
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1. Read 0x00000014

= 000000000000000000 0000000001 Q100
Valid QI%g f?eld ?nt?ex ?ield 8ffset
all

Index _Tag Oxc-f 0x8-b 0x4-7 0x0-3

NonolkhWNR O

plollololololo

10224 ] ] ] ] ]
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So we read block 1 (0000000001)
= 000000 0?0?0)?%001 8%f%%t

Tag Oxc-f 0x8-b  0x4-7 0x0-3

0000000000

[

NoonkhWwWNROQ

plollololololo

10224 ] ] ] ] ]

Q CSB1C L11 Caches (26) Huddleston, Summer 2009 © UCB

Direct-Mapped Cache Example (2/3)

= Index: (~index into an “array of blocks”)
= need to specify correct block in cache
= cache contains 8 B = 22 bytes
s block contains 2 B = 2 bytes
= # blocks/cache

= Dbytes/cache
bytes/block

= 23 bytes/cache
21 bytes/block

= 22blocks/cache
= need 2 bits to specify this many blocks
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16 KB Direct Mapped Cache, 16B blocks

= Valid bit: determines whether anything is stored
in that row (when computer initially turned on, all
Valid entries invalid)

Index Tag Oxc-f Ox8-b 0x4-7 0x0-3

o

NJonulkWNRHRO

REREEREEEE,

1022 ] ] ] ] ]
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No valid data
0000000000

0?0?00?001 100
X Ti 8ffset

Tag Oxc-f 0x8-b  0x4-7 0x0-3

HIFEREEEIELS

10224 ] ] ] ] ]
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So load that data into cache, setting tag, valid

= 000000000000000000 0000000001 Q100
K T leld ?n ex ?ield 8ffset
Valid
Index__Ta: Oxc-f O0x8-b  0x4-7 0x0-3

o [od 2

1 Ao d c b a
2 [0

3 |0

4 |9

5 |9

6 |9

7 O

10229 | | ] I ]
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Read from cache at offset, return word b

= 000000Q00000000000 0000000001 0100
Valid QI%g f?eld ?n ex ?ield /&Ts‘ét
all

Index _Tag Oxc-f 0x8-b  0x4-7 0x0-3

0 d c q b D a

~NoudWNRO
AR = EEE S

1022 ] ] ] ] ]
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Index is Valid

0001 1100
Tag field Index field Offset

Tag Oxc-f 0x8-b  0x4-7 0x0-3

0 d c b a

NoulhWwWNRO

olololololo]|=lo!

10224 ] ] ] ] ]
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Index valid, Tag Matches

0001 1100
Index field Offset

Oxc-f 0x8-b 0x4-17 0x0-3

0 d c b a

NJoondWwWNhRrO
clololololol=o

10224 ] ] ] ] ]
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3. Read 0x00000034 = 0...00 0..011 0100

= 000000000000000000 0000000011 0100
Tag field Index fiel[d Offset

Valid
Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3
o [0
1 Ao d c b a
2 [0
3 [0
4 [9
5 [d
6 |o
7 L9
1022d ] ] | | ]
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So read block 3
= 000000000000000000 0000000011 0100
. Tag field Index field Offset
Valid
Index _Tag  Oxc-f 0x8j/0x4—7 0x0-3
0 |9
(1’1 0 d c b a
2 Jo
3 [0
7 |9
5 [of
6 [
7 o
10224 ] | I I ]
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2. Read 0x0000001C =0...00 0..001 1100

= 000000000000000000 0000000001 1100
Tag field Index field Offset

Valid
Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3
o [0
1 Ao d c b a
2 [0
3 [0
4 [9
5 [d
6 |o
7 L0
1022d ] ] | | ]
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Index Valid, Tag Matches, returnd

0001 00
Index fie set
0x8- 0x4-7 0x0-3

0 |9 L

1 o d c b a
2 [0

3 [0

4 [9

5 [d

6 |o

7 L9

1022d ] ] | | ]
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No valid data

= 000000000000000000 0000000011 0100

. Tag field Index field Offset
Valid
Index_ Tag Oxc-f  0x8-b ~0x4-7 0x0-3

G

0 d c b a

|;>-lo

w
-

~Noyur k|
clololdlo

10224 ] ] ] ] ]

Q CSB1C L11 Caches (36) Huddleston, Summer 2009 © UCB




Load that cache block, return word f

= 000000000000000000 0000000011 0100

. Tag field Index Tield set
Valid
Index . Tag _ Oxc-f _ 0x8-b—~0x4-7 /0x0-3
0
0 d c b '/ a
0 h q [ )

NN
ARRERERRE

10224 I ] ] ] ]
10234 | | | ] ]
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4. Read 0x00008014 = 0...10 0..001 0100

= 000000000000000010 0000000001 0100
Tag field Index fiel[d™ Offset

Valid

Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3

0 |9

100 d c b a

2 Jo

3 [0 h q f e

4 |[9

5 |9

6 |0

7 9
10224 | | | | ]
10239 ] ] ] ] |
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Cache Block 1 Tag does not match (0 !=2)

= 000000000000000010 0000000001 0100

Valid ag field Index field Offset
Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3

0 [9 /

10 o d c b a

2 [0

3 10 h q T e

4 [9

5 [9

6 [9

7 Lo
10229 I I I I ]
1023d ] ] | | 1
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Miss, so replace block 1 with new data & tag

= 000000000000000010 0000000001 0100
valid  1ad field Index field Offset

Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3

o [0

1 12 ] k i i

2 [0

3 [0 h q f e

4 |9

5 |9

6 |O]

7 Lo
1022 ] ] ] ] |
1023d ] ] ] ] ]
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What to do on a write hit?

= Write-through

= update the word in cache block and
corresponding word in memory

= Write-back
= update word in cache block
= allow memory word to be “stale”

= = add ‘dirty’ bit to each block indicating that
memory needs to be updated when block is
replaced

= = OS flushes cache before 1/0...
= Performance trade-offs?
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Types of Cache Misses (1/2)

= “Three Cs” Model of Misses
= 15t C: Compulsory Misses
= occur when a program is first started
= cache does not contain any of that program’s
data yet, so misses are bound to occur
= can’t be avoided easily, so won’t focus on
these in this course

Q CSB1C L1 Caches (44)
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So read Cache Block 1, Data is Valid

= 000000000000000010 0000000001 0100
. ex fie Offset

dex Tag Oxc-f 0x8-b  0x4-7 0x0-3

o [0

1] o d c b a

2 [0

30 h 5] f e

4 [9

5 [d

6 |9

7 [o
1022 ] ] ] | ]
1023d ] ] ] ] ]

CSB1C L11 Caches (39) Huddleston, Summer 2009 © UCB

And return word J

= 000000000000000010 0000000001 00
eld Index field

Valid agt set

Index__Tag Oxc-f 0x8-b 0x4-7 0x0-3

o [0 7/

1[0 2 1 k i i

2 [o

3 10 h q T e

4 |[d

5 |of

6 |0

7 Lo
10229 ] ] | | ]
1023d ] ] | | 1
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Types of Cache Misses (2/2)

= 2nd C: Conflict Misses

miss that occurs because two distinct memory
addresses map to the same cache location

two blocks (which happen to map to the same
location) can keep overwriting each other

big problem in direct-mapped caches
= how do we lessen the effect of these?
= Dealing with Conflict Misses
= Solution 1: Make the cache size bigger
- Fails at some point

= Solution 2: Multiple distinct blocks can fit in the
same cache Index?

Q CSB1C L11 Caches (45)
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Fully Associative Cache (1/3)

= Memory address fields:
= Tag: same as before
= Offset: same as before
= Index: non-existant

= What does this mean?

= no “rows”: any block can go anywhere in the
cache

= must compare with all tags in entire cache to
see if data is there

Q CSB1C L11 Caches (46)
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Fully Associative Cache (2/3)

= Fully Associative Cache (e.g., 32 B block)
= compare tags in parallel

31 4 0
| Cache Tag (27 bits long)  [Byte Offset|

Cache Tag Valid Cache Data
@'@' (B3 -TBTB 0
" o [ T 1
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Final Type of Cache Miss

= 3rd C: Capacity Misses

= miss that occurs because the cache has a
limited size

= miss that would not occur if we increase the
size of the cache

= sketchy definition, so just get the general idea

= This is the primary type of miss for Fully
Associative caches.
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N-Way Set Associative Cache (1/3)

= Memory address fields:
= Tag: same as before
= Offset: same as before

= Index: points us to the correct “row” (called a
set in this case)

= So what’s the difference?
= each set contains multiple blocks

= once we’ve found correct set, must compare
with all tags in that set to find our data

Q CSB1C L11 Caches (50)
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N-Way Set Associative Cache (2/3)

= Basic ldea

= cache is direct-mapped w/respect to sets

= each set is fully associative with N blocks in it
= Given memory address:

= Find correct set using Index value.

= Compare Tag with all Tag values in the

determined set.
= If a match occurs, hit!, otherwise a miss.

= Finally, use the offset field as usual to find the
desired data within the block.
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N-Way Set Associative Cache (3/3)

= What’s so great about this?

= even a 2-way set assoc cache avoids a lot of
conflict misses

= hardware cost isn’t that bad: only need N
comparators

= In fact, for a cache with M blocks,
o it’s Direct-Mapped if it’s 1-way set assoc
o it’s Fully Assoc if it's M-way set assoc

= so these two are just special cases of the
more general set associative design

Q CSB1C L11 Caches (53)
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Fully Associative Cache (3/3)

= Benefit of Fully Assoc Cache
= No Conflict Misses (since data can go
anywhere)
= Drawbacks of Fully Assoc Cache

= Need hardware comparator for every single
entry: if we have a 64KB of data in cache with
4B entries, we need 16K comparators:
infeasible

Q CSB1C L11 Caches (48)
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Associative Cache Example
......... y Cache
Address Memory Index

0
0

= Here’s a simple 2-way
set associative
cache.

&aow;»om\lamawmue
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4-Way Set Associative Cache Circuit

Address
3130..412111098-.-3210
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Block Replacement Policy

= Direct-Mapped Cache
= index completely specifies position which position a block
can go in on a miss
= N-Way Set Assoc
s index specifies a set, but block can occupy any position
within the set on a miss
= Fully Associative
s block can be written into any position
= Question: if we have the choice, where should we
write an incoming block?
s If there are any locations with valid bit off (empty), then
usually write the new block into the first one.
o If all possible locations already have a valid block, we must
pick a replacement policy: rule by which we determine
w which block gets “cached out” on a miss.
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Block Replacement Policy: LRU

= LRU (Least Recently Used)

= ldea: cache out block which has been
accessed (read or write) least recently

= Pro: temporal locality = recent past use
implies likely future use: in fact, this is a very
effective policy

= Con: with 2-way set assoc, easy to keep track
(one LRU bit); with 4-way or greater, requires
complicated hardware and much time to keep
track of this

w CSB1C L11 Caches (56)
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Block Replacement Example: LRU Joc0 loct

0: miss, bring into set 0 (loc 0) set1

set ofiru 0 -2

2: miss, bring into set 0 (loc 1) _,,

set offill g firuy

set 1

0: hit

setol ofruo
set1 q[ru

|
4: miss, bring into set 0 (loc 1, replace 2) OW-I—

1: miss, bring into set 1 (loc 0)

set 1 ru
setol_o ruy
0: hit m
ddresses 0, 2,0, 1,4,0, ... set1f 1
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Big Idea

= How to choose between associativity,
block size, replacement & write policy?
= Design against a performance model
= Minimize: Average Memory Access Time
= Hit Time
+ Miss Penalty x Miss Rate
= influenced by technology & program behavior
Create the illusion of a memory that is
large, cheap, and fast - on average

= How can we improve miss penalty?

w CSB1C L11 Caches (59)
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And in Conclusion...

= We would like to have the capacity of disk
at the speed of the processor:
unfortunately this is not feasible.

= So we create a memory hierarchy:

= each successively lower level contains “most
used” data from next higher level

= exploits temporal & spatial locality

= do the common case fast, worry less about
the exceptions
(design principle of MIPS)

= Locality of reference is a Big Idea
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And in Conclusion...

= Mechanism for transparent movement of

data among levels of a storage hierarchy
= set of address/value bindings
= address => index to set of candidates
= compare deswed address with tag
o service hit or m
- load new block and binding on miss

address: tag index offset

000000000000000000 0000000001 1100

Vali Tog / Oxc-£ _ Ox8-b —0%4-7 _ 0x0-3
_ XC— ) X X
1 0 d C b a

WO

w CSB1C L11 Caches (62)
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Block Replacement Example

= We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the following
word accesses (ignore bytes for this
problem):

0,2,0,1,4,0,2,3,5,4
= How many hits and how many misses will

there be for the LRU block replacement
policy?

w CSB1C L11 Caches (57)
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Improving Miss Penalty

= When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

= Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
=> 200 processor clock cycles!

[Proc—

Solution: another cache between memory and
Z the processor cache: Second Level (L2) Cache
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And in Conclusion...

= We’ve discussed memory caching in detail. Caching in
general shows up over and over in computer systems
s Filesystem cache, Web page cache, Game databases / tablebases,
Software memoization, Others?
= Big idea: if something is expensive but we want to do it
repeatedly, do it once and cache the result.
= Cache design choices:
o Size of cache: speed v. capacity
= Block size (i.e., cache aspect ratio)
= Write Policy (Write through v. write back
s Associativity choice of N (direct-mapped v. set v. fully associative)
= Block replacement policy
s 2nd level cache?
= 3rd level cache?

= Use performance model to pick between choices, depending

on programs, technology, budget, ...
861G L11 Caches (63)
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Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve
as a supplement.

= The slides will appear in the order they

woulnin the normal presentation
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T1O The great cache mnemonic

AREA (cache size, B)
= HEIGHT (# of blocks)
* WIDTH (size of one block, B/block)

WIDTH

(size of one block, B/block)

2(H+W) = 2H * oW

HEIGHT
(# of blocks)
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Accessing data in a direct mapped cache

= 4 Addresses:

= 0x00000014, 0x0000001C,
0x00000034, 0x00008014

= 4 Addresses divided (for convenience)
into Tag, Index, Byte Offset fields

Do an example yourself. What happens?
= Chose from: Cache: Hit, Miss, Miss w. replace
Values returned: a,b,c,d,e,... k|

= Read address 0x00000030 ?
000000000000000000 0000000011 0000

= Read address 0x0000001c ?
000000000000000000 0000000001 1100

Ca%p

= Benefits of Larger Block Size

= Spatial Locality: if we access a given word,
we’re likely to access other nearby words
soon

= Very applicable with Stored-Program Concept:
if we execute a given instruction, it’s likely
that we’ll execute the next few as well

= Works nicely in sequential array accesses too
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000000000000000000 0000000001 0100 Inde fldrag 0x0-3  Oxd-7 Ox8-b Oxef
000000000000000000 0000000001 1100 N ' k o1 ‘
000000000000000000 0000000011 0100 3 h g ; e
000000000000000010 0000000001 0100 59
Tag Index Offset g 8
Block Size Tradeoff (1/3) Block Size Tradeoff (2/3)

= Drawbacks of Larger Block Size
= Larger block size means larger miss penalty

= on a miss, takes longer time to load a new block
from next level

= If block size is too big relative to cache size,
then there are too few blocks
* Result: miss rate goes up
= In general, minimize
Average Memory Access Time (AMAT)
= Hit Time

+ Miss Penalty x Miss Rate
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Accessing data in a direct mapped cache

= Ex.: 16KB of data,

Memory
K Address (hex)Value of Word
direct-mapped,

4 word blocks 888888%2 la>

= Canyouworkout 00000018 <

height, width, 0000001cl 4

area? 00000030 r

= Read 4 addresses 00000034 f

1. 0x00000014 00000038 3

2. 0x0000001C 0000003cL__t
3. 0x00000034 00008010
4. 0x00008014 00008014

00008018 K

Q Memory vals here: g00801c
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Answers

= 000000030 a hit

Memory
Address (hex)Value of Word
Index = 3, Tag matches,

Offset =0, value = e 00000010 a
. 00000014 b
= 0x0000001c a miss 00000018 c
Index = 1, Tag mismatch, 0000001C d
so replace from memory,
Offset = Oxc, value=d 00000030 ?
= Since reads, values 88888833 q
must = memory values 0000003C h
whether or not cached: 00008010
= 0x00000030 =e 888838%3
- K
= 0x0000001c=d 0000801C
Block Size Tradeoff (3/3)
= Hit Time
= time to find and retrieve data from current
level cache

= Miss Penalty

= average time to retrieve data on a current level
miss (includes the possibility of misses on
successive levels of memory hierarchy)
= Hit Rate

= % of requests that are found in current level
cache

= Miss Rate

& -1 -vitRate
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Extreme Example: One Big Block

Valid Bit Tag Cache Data
O [ ]

= Cache Size = 4 bytes Block Size =4
bytes

= Only ONE entry (row) in the cache!
= If item accessed, likely accessed again
soon

= But unlikely will be accessed again
immediately!

= The next access will likely to be a miss

diceard data (farce ant) hafare 11<e it anain

Block Size Tradeoff Conclusions

wagain
spERtiRualivloadina data into-t g e

Miss Miss  Expioits Spatial Localit
Penalty Rate " P y
Fewer blocks:
compromises
temporal locality
Block Size Block Size
Average Increased Miss Penalty
Access & Miss Rate
Time
“@“..... Block Size

Analyzing Multi-level cache hierarchy

- T o
|G £
L1 hit | L2hit
time time | |2 Miss Rate
L2 Miss Penalty
L1 Miss Rafe

Avg Mem Access Timlie1 =MISS Penalty

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
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Example

= Assume
= Hit Time =1 cycle
o Miss rate = 5%
= Miss penalty = 20 cycles
= Calculate AMAT...
= Avg mem access time
=1+0.05x20
=1+ 1 cycles
=2 cycles
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Ways to reduce miss rate

= Larger cache
= limited by cost and technology
= hit time of first level cache < cycle time
(bigger caches are slower)
= More places in the cache to put each
block of memory — associativity
o fully-associative
= any block any line
= N-way set associated
= N places for each block
= direct map: N=1
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Q (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

Typical Scale

= L1
= size: tens of KB
= hit time: complete in one clock cycle
= miss rates: 1-5%
= L2:
= size: hundreds of KB
o hit time: few clock cycles
= miss rates: 10-20%
= L2 miss rate is fraction of L1 misses that
also miss in L2

Example: with L2 cache

= Assume
= L1 Hit Time =1 cycle
= L1 Miss rate = 5%
= L2 Hit Time =5 cycles
= L2 Miss rate = 15% (% L1 misses that miss)
o L2 Miss Penalty = 200 cycles
= L1 miss penalty =5+ 0.15 * 200 = 35
= Avg mem access time =1 + 0.05 x 35
=2.75 cycles
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Example: without L2 cache

= Assume
= L1 Hit Time =1 cycle
o L1 Miss rate = 5%
= L1 Miss Penalty = 200 cycles
= Avg mem access time =1 + 0.05 x 200
=11 cycles

= 4x faster with L2 cache! (2.75 vs. 11)
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w = why so high?
csetc Lt cacnes 79
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An actual CPU — Early PowerPC

AR T AT AR AR 11T

| DanlCacne Lo

= Cache -

= 32 KB Instructions and 32 ‘__

KB Data L1 caches E Datilos
External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache
Dual Memory
Management Units (MMU)
with Translation
Lookaside Buffers (TLB)

= Pipelining
= Superscalar (3 inst/cycle)

o

o

=6 execution units (2

integer and 1 doubl



An Actual CPU — Pentium M

Infel® Pentium

New Micro Architecture

7 Million Transistors

fuses operation
together to enable
faster execution of
instructions at lower
power

faster instruction
at lower power
lovels
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