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Review : Pipelining 

!! Pipeline challenge is hazards 

"! Forwarding helps w/many data hazards 

"! Delayed branch helps with control hazard in 

our 5 stage pipeline 

"! Data hazards w/Loads ! Load Delay Slot 

!! Interlock ! “smart” CPU has HW to detect if 

conflict with inst following load, if so it stalls  

!! More aggressive performance (discussed 

in section next week) 

"! Superscalar (parallelism) 

"! Out-of-order execution 
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The Big Picture 

 Processor!
 (active)!

Computer!

Control!
(“brain”)!

Datapath!
(“brawn”)!

Memory!
(passive)!
(where "

programs, "
data live "

when"
running)!

Devices!

Input!

Output!

Keyboard, "
Mouse"

Display, #
Printer"

Disk,!
Network "
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Memory Hierarchy 

!! Processor 

"! holds data in register file (~100 Bytes) 

"! Registers accessed on nanosecond timescale 

!! Memory (we’ll call “main memory”) 

"! More capacity than registers (~Gbytes) 

"! Access time ~50-100 ns 

"! Hundreds of clock cycles per memory 

access?! 

!! Disk 

"! HUGE capacity (virtually limitless) 

"! VERY slow: runs ~milliseconds 

I.e., storage in 

computer systems 
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Motivation: Why We Use Caches (written $) 

!! 1989 first Intel CPU (80486) with cache on chip 

!! 1995 first Intel CPU (Pentium Pro) with two 

levels of cache on chip 
!Proc 
60%/yr. 

DRAM 
7%/yr. 
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Memory Caching 

!! Mismatch between processor and 

memory speeds leads us to add a new 

level: a memory cache 

!! Implemented with same IC processing 

technology as the CPU (usually 

integrated on same chip): faster but more 

expensive than DRAM memory. 

!! Cache is a copy of a subset of main 

memory. 

!! Most processors have separate caches 

for instructions and data. 
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Memory Hierarchy 

Processor 

Size of memory at each level 

Increasing 
Distance 

from Proc., 
Decreasing  

speed 

Level 1 

Level 2 

Level n 

Level 3 

. . . 

Higher 

Lower 

Levels in 

memory 

hierarchy 

As we move to deeper levels the latency 
goes up and price per bit goes down. 
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Memory Hierarchy 

!! If level closer to Processor, it is: 

"! Smaller 

"! Faster 

"! More expensive 

"! subset of lower levels (contains most recently 

used data) 

!! Lowest Level (usually disk) contains all 

available data (does it go beyond the disk?) 

!! Memory Hierarchy presents the processor 

with the illusion of a very large & fast 

memory 
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Memory Hierarchy Analogy: Library (1/2) 

!! You’re writing a term paper (Processor) at 

a table in Doe 

!! Doe Library is equivalent to disk 

"! essentially limitless capacity 

"! very slow to retrieve a book 

!! Table is main memory 

"! smaller capacity: means you must return book 

when table fills up 

"! easier and faster to find a book there once 

you’ve already retrieved it 
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Memory Hierarchy Analogy: Library (2/2) 

!! Open books on table are cache 

"! smaller capacity: can have very few open 

books fit on table; again, when table fills up, 

you must close a book 

"! much, much faster to retrieve data 

!! Illusion created: whole library open on 

the tabletop  

"! Keep as many recently used books open on 

table as possible since likely to use again 

"! Also keep as many books on table as 

possible, since faster than going to library 
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Memory Hierarchy Basis 

!! Cache contains copies of data in memory 

that are being used. 

!! Memory contains copies of data on disk 

that are being used. 

!! Caches work on the principles of 

temporal and spatial locality. 

"! Temporal Locality: if we use it now, chances 

are we’ll want to use it again soon. 

"! Spatial Locality: if we use a piece of memory, 

chances are we’ll use the neighboring pieces 

soon. 
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Cache Design 

!! How do we organize cache? 

!! Where does each memory address map 

to? 

"! (Remember that cache is subset of memory, 

so multiple memory addresses map to the 

same cache location.) 

!! How do we know which elements are in 

cache? 

!! How do we quickly locate them? 
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Administrivia 

!! Project 4 (on Caches) will be in 

optional groups of two. 

!! Jeremy’s OH today canceled 

"! I will have OH on Friday, time will be posted 

on the newsgroup 

!! HW7 due tomorrow 

"! You MUST have a discussion with your TA in 

lab tomorrow for credit 
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Direct-Mapped Cache (1/4) 

!! In a direct-mapped cache, each memory 

address is associated with one possible 

block within the cache 

"! Therefore, we only need to look in a single 

location in the cache for the data if it exists in 

the cache 

"! Block is the unit of transfer between cache 

and memory 
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Direct-Mapped Cache (2/4) 

      Cache Location 0 can be 

    occupied by data from: 

"! Memory location 0, 4, 8, ...  

"! 4 blocks ! any memory 

location that is multiple of 4 

Memory!
Memory "

Address!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
A!
B!
C!
D!
E!
F!

4  Byte Direct !

Mapped Cache!

Cache !

Index!
0!
1!
2!
3!

What if we wanted a block 

to be bigger than one byte? 

Block size = 1 byte!
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Direct-Mapped Cache (3/4) 

!! When we ask for a byte, the 
system finds out the right block, 
and loads it all! 
"! How does it know right block? 
"! How do we select the byte? 

!! E.g., Mem address 11101? 
!! How does it know WHICH 

colored block it originated from? 
"! What do you do at baggage claim? 

Memory!
Memory "

Address!

0!
2!
4!
6!
8!
A!
C!
E!

10!
12!
14!
16!
18!
1A!
1C!
1E!

8  Byte Direct !

Mapped Cache!

Cache !

Index!
0!
1!
2!
3!

0!1!
2!3!

etc!
Block size = 2 bytes!

4!5!
6!7!
8!9!
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Direct-Mapped Cache (4/4) 

!! What should go in the tag? 
"! Do we need the entire address? 

!! What do all these tags have in 
common? 

"! What did we do with the immediate 
when we were branch addressing, 
always count by bytes? 

!! Why not count by cache #? 
"! It’s useful to draw memory with the 

same width as the block size 

Memory!
(addresses shown)!

Memory Address!

0!
2!
4!
6!
8!
A!
C!
E!

10!
12!
14!
16!
18!
1A!
1C!

1E!

8  Byte Direct !

Mapped Cache w/Tag!!

Cache !

Index!
0!
1!
2!
3!

0!1!
2!3!

etc!

    Tag          Data!
(Block size = 2 bytes)!

4!5!
6!7!
8!9!

8!
2!

1E!
14!0!

1!

2!

3!

Cache#!

1!
0!

3!
2!
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!! Since multiple memory addresses map to 

same cache index, how do we tell which 

one is in there? 

!! What if we have a block size > 1 byte? 

!! Answer: divide memory address into 

three fields 

ttttttttttttttttt iiiiiiiiii oooo 

 tag  index  byte 
to check  to  offset 
if have  select  within 
correct block  block  block 

Issues with Direct-Mapped 
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Direct-Mapped Cache Terminology 

!! All fields are read as unsigned integers. 

!! Index 

"! specifies the cache index (which “row”/block 

of the cache we should look in) 

!! Offset 

"! once we’ve found correct block, specifies 

which byte within the block we want 

!! Tag 

"! the remaining bits after offset and index are 

determined; these are used to distinguish 

between all the memory addresses that map 

to the same location 
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Direct-Mapped Cache Example (1/3) 

!! Suppose we have a 8B of data in a direct-

mapped cache with 2 byte blocks 

"! Sound familiar? 

!! Determine the size of the tag, index and 

offset fields if we’re using a 32-bit 

architecture 

!! Offset 

"! need to specify correct byte within a block 

"! block contains 2 bytes 

         = 21 bytes 

"! need 1 bit to specify correct byte 
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Direct-Mapped Cache Example (2/3) 

!! Index: (~index into an “array of blocks”) 

"! need to specify correct block in cache 

"! cache contains 8 B = 23 bytes 

"! block contains 2 B = 21 bytes 

"! # blocks/cache 

     =  bytes/cache 

   bytes/block 

     =  23 bytes/cache 

   21 bytes/block 

     =  22 blocks/cache 

"! need 2 bits to specify this many blocks 
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Direct-Mapped Cache Example (3/3) 

!! Tag: use remaining bits as tag 

"! tag length = addr length - offset - index   

              = 32 - 1 - 2 bits 

         = 29 bits   

"! so tag is leftmost 29 bits of memory address 

!! Why not full 32 bit address as tag? 

"! All bytes within block need same address (4b) 

"! Index must be same for every address within 

a block, so it’s redundant in tag check, thus 

can leave off to save memory (here 10 bits) 
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Caching Terminology 

!! When reading memory, 3 things can 

happen:  

"! cache hit:  

cache block is valid and contains proper 

address, so read desired word 

"! cache miss:  

nothing in cache in appropriate block, so 

fetch from memory 

"! cache miss, block replacement:  

wrong data is in cache at appropriate block, 

so discard it and fetch desired data from 

memory (cache always copy) 
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16 KB Direct Mapped Cache, 16B blocks 

!! Valid bit: determines whether anything is stored 
in that row (when computer initially turned on, all 
entries invalid)  

...!

Valid!
Tag! 0xc-f! 0x8-b! 0x4-7! 0x0-3!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

Index!
0"

0"
0"
0"

0"
0"
0"

0"

0"
0"
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1. Read 0x00000014 

...!

Valid!
Tag!

0!
1 
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!
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So we read block 1 (0000000001) 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!
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No valid data 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

!! 000000000000000000 0000000001 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!
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So load that data into cache, setting tag, valid 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0! d! c! b! a!

!! 000000000000000000 0000000001 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!
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Read from cache at offset, return word b 

!! 000000000000000000 0000000001 0100 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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2. Read 0x0000001C = 0…00 0..001 1100 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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Index is Valid 

...!

Valid!
Tag!

0!
1 
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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Index valid, Tag Matches 

...!

Valid!
Tag!

0!
1 
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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Index Valid, Tag Matches, return d 

...!

Valid!
Tag!

0!
1 
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000001 1100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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3. Read 0x00000034 = 0…00 0..011 0100 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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So read block 3 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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No valid data 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100 

Index!

Tag field! Index field! Offset!

0"

0"
0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!
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Load that cache block, return word f 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000000 0000000011 0100 

1! 0! h! g! f! e!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

d! c! b! a!

0xc-f! 0x8-b! 0x4-7! 0x0-3!
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4. Read 0x00008014 = 0…10 0..001 0100 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100 

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!
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So read Cache Block 1, Data is Valid 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100 

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!
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Cache Block 1 Tag does not match (0 != 2) 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 0!

!! 000000000000000010 0000000001 0100 

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

d! c! b! a!

h! g! f! e!
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Miss, so replace block 1 with new data & tag 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 2! l! k! j! i!

!! 000000000000000010 0000000001 0100 

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

0xc-f! 0x8-b! 0x4-7! 0x0-3!

h! g! f! e!
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And return word J 

...!

Valid!
Tag!

0!
1!
2!
3!
4!
5!
6!
7!

1022!
1023!

...!

1! 2!

!! 000000000000000010 0000000001 0100 

1! 0!

Index!

Tag field! Index field! Offset!

0"

0"

0"
0"
0"

0"

0"
0"

l! k! j! i!

0xc-f! 0x8-b! 0x4-7! 0x0-3!

h! g! f! e!
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What to do on a write hit? 

!! Write-through 

"! update the word in cache block and 

corresponding word in memory 

!! Write-back 

"! update word in cache block 

"! allow memory word to be “stale” 

"! ! add ‘dirty’ bit to each block indicating that 

memory needs to be updated when block is 

replaced 

"! ! OS flushes cache before I/O… 

!! Performance trade-offs? 
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Types of Cache Misses (1/2) 

!! “Three Cs” Model of Misses 

!! 1st C: Compulsory Misses 

"! occur when a program is first started 

"! cache does not contain any of that program’s 

data yet, so misses are bound to occur 

"! can’t be avoided easily, so won’t focus on 

these in this course 
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Types of Cache Misses (2/2) 

!! 2nd C: Conflict Misses 

"! miss that occurs because two distinct memory 

addresses map to the same cache location 

"! two blocks (which happen to map to the same 

location) can keep overwriting each other 

"! big problem in direct-mapped caches 

"! how do we lessen the effect of these? 

!! Dealing with Conflict Misses 

"! Solution 1: Make the cache size bigger 

!! Fails at some point  

"! Solution 2: Multiple distinct blocks can fit in the 

same cache Index? 
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Fully Associative Cache (1/3) 

!! Memory address fields: 

"! Tag: same as before 

"! Offset: same as before 

"! Index: non-existant 

!! What does this mean? 

"! no “rows”: any block can go anywhere in the 

cache 

"! must compare with all tags in entire cache to 

see if data is there 

CS61C L11 Caches (47) Huddleston, Summer 2009 © UCB 

Fully Associative Cache (2/3) 

!! Fully Associative Cache (e.g., 32 B block) 

"! compare tags in parallel 

Byte Offset!

:!

 Cache Data!

B  0!

0!4!31!

:!

Cache Tag (27 bits long)!

Valid!

:!

B 1!B 31! :!

 Cache Tag!
=!

=!

=!

=!

=!

:!
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Fully Associative Cache (3/3) 

!! Benefit of Fully Assoc Cache 

"! No Conflict Misses (since data can go 

anywhere) 

!! Drawbacks of Fully Assoc Cache 

"! Need hardware comparator for every single 

entry: if we have a 64KB of data in cache with 

4B entries, we need 16K comparators: 

infeasible 
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Final Type of Cache Miss 

!! 3rd C: Capacity Misses 

"! miss that occurs because the cache has a 

limited size 

"! miss that would not occur if we increase the 

size of the cache 

"! sketchy definition, so just get the general idea 

!! This is the primary type of miss for Fully 

Associative caches. 

CS61C L11 Caches (50) Huddleston, Summer 2009 © UCB 

N-Way Set Associative Cache (1/3) 

!! Memory address fields: 

"! Tag: same as before 

"! Offset: same as before 

"! Index: points us to the correct “row” (called a 

set in this case) 

!! So what’s the difference? 

"! each set contains multiple blocks 

"! once we’ve found correct set, must compare 

with all tags in that set to find our data 
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Associative Cache Example 

!! Here’s a simple 2-way 

set associative 

cache. 

Memory!
Memory "

Address!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
A!
B!
C!
D!
E!
F!

Cache !

Index!
0!
0!
1!
1!
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N-Way Set Associative Cache (2/3) 

!! Basic Idea 

"! cache is direct-mapped w/respect to sets 

"! each set is fully associative with N blocks in it 

!! Given memory address: 

"! Find correct set using Index value. 

"! Compare Tag with all Tag values in the 

determined set. 

"! If a match occurs, hit!, otherwise a miss. 

"! Finally, use the offset field as usual to find the 

desired data within the block. 
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N-Way Set Associative Cache (3/3) 

!! What’s so great about this? 

"! even a 2-way set assoc cache avoids a lot of 

conflict misses 

"! hardware cost isn’t that bad: only need N 

comparators 

!! In fact, for a cache with M blocks, 

"! it’s Direct-Mapped if it’s 1-way set assoc 

"! it’s Fully Assoc if it’s M-way set assoc 

"! so these two are just special cases of the 

more general set associative design 
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4-Way Set Associative Cache Circuit 

tag"
index"
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Block Replacement Policy 

!! Direct-Mapped Cache 

"! index completely specifies position which position a block 

can go in on a miss 

!! N-Way Set Assoc 

"! index specifies a set, but block can occupy any position 

within the set on a miss 

!! Fully Associative 

"! block can be written into any position 

!! Question: if we have the choice, where should we 

write an incoming block? 

"! If there are any locations with valid bit off (empty), then 

usually write the new block into the first one. 

"! If all possible locations already have a valid block, we must 

pick a replacement policy: rule by which we determine 

which block gets “cached out” on a miss. 
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Block Replacement Policy: LRU 

!! LRU (Least Recently Used) 

"! Idea: cache out block which has been 

accessed (read or write) least recently 

"! Pro: temporal locality ! recent past use 

implies likely future use: in fact, this is a very 

effective policy 

"! Con: with 2-way set assoc, easy to keep track 

(one LRU bit); with 4-way or greater, requires 

complicated hardware and much time to keep 

track of this 
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Block Replacement Example 

!! We have a 2-way set associative cache 

with a four word total capacity and one 

word blocks.  We perform the following 

word accesses (ignore bytes for this 

problem): 

  0, 2, 0, 1, 4, 0, 2, 3, 5, 4 

!! How many hits and how many misses will 

there be for the LRU block replacement 

policy? 
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Block Replacement Example: LRU 

Addresses 0, 2, 0, 1, 4, 0, ... 

0!
lru!

2!

1!
lru!

loc 0! loc 1!

set 0!

set 1!

0! 2!
lru!set 0!

set 1!

 0: miss, bring into set 0 (loc 0)"

 2: miss, bring into set 0 (loc 1)!

 0: hit!

 1: miss, bring into set 1 (loc 0)!

 4: miss, bring into set 0 (loc 1, replace 2)!

 0: hit!

0!set 0!

set 1!

lru!lru!

0! 2!set 0!

set 1!

lru! lru!

set 0!

set 1!

0!

1!
lru!

lru!
2!4!lru!

set 0!

set 1!

0! 4!

1!
lru!

lru! lru!
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Big Idea 

!! How to choose between associativity, 

block size, replacement & write policy? 

!! Design against a performance model 

"! Minimize: Average Memory Access Time  

     = Hit Time  

      +  Miss Penalty x Miss Rate 

"! influenced by technology & program behavior 

!! Create the illusion of a memory that is 

large, cheap, and fast - on average 

!! How can we improve miss penalty? 
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Improving Miss Penalty 

!! When caches first became popular, Miss 

Penalty ~ 10 processor clock cycles 

!! Today 2400 MHz Processor (0.4 ns per 

clock cycle) and 80 ns to go to DRAM  

! 200 processor clock cycles! 

Proc" $2"

D
R

A
M
"

$"

MEM"

Solution: another cache between memory and 

the processor cache: Second Level (L2) Cache 
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And in Conclusion… 

!! We would like to have the capacity of disk 

at the speed of the processor: 

unfortunately this is not feasible. 

!! So we create a memory hierarchy: 

"! each successively lower level contains “most 

used” data from next higher level 

"! exploits temporal & spatial locality  

"! do the common case fast, worry less about 

the exceptions  

(design principle of MIPS) 

!! Locality of reference is a Big Idea 
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And in Conclusion… 

!! Mechanism for transparent movement of 

data among levels of a storage hierarchy 
"! set of address/value bindings 
"! address ! index to set of candidates 
"! compare desired address with tag 
"! service hit or miss 

!! load new block and binding on miss 

Valid!
Tag! 0xc-f! 0x8-b! 0x4-7! 0x0-3!

0!
1!
2!
3!
...!

1! 0! d! c! b! a!

000000000000000000 0000000001 1100!
address:            tag                                index                      offset   
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And in Conclusion… 

!! We’ve discussed memory caching in detail.  Caching in 

general shows up over and over in computer systems 

"! Filesystem cache, Web page cache, Game databases / tablebases, 

Software memoization, Others? 

!! Big idea: if something is expensive but we want to do it 

repeatedly, do it once and cache the result.  

!! Cache design choices: 

"! Size of cache: speed v. capacity 

"! Block size (i.e., cache aspect ratio) 

"! Write Policy (Write through v. write back 

"! Associativity choice of N (direct-mapped v. set v. fully associative) 

"! Block replacement policy 

"! 2nd level cache? 

"! 3rd level cache? 

!! Use performance model to pick between choices, depending 

on programs, technology, budget, ... 
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Bonus slides 

!! These are extra slides that used to be 

included in lecture notes, but have been 

moved to this, the “bonus” area to serve 

as a supplement. 

!! The slides will appear in the order they 

would have in the normal presentation 
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AREA (cache size, B) 

= HEIGHT (# of blocks)  

   * WIDTH (size of one block, B/block) 

WIDTH  

(size of one block, B/block) 

HEIGHT 

(# of blocks) 
AREA 

(cache size, 

B) 

2(H+W) = 2H * 2W 

Tag  Index   Offset 

TIO The great cache mnemonic 
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!! Ex.: 16KB of data, 

direct-mapped,  

4 word blocks 

"! Can you work out 

height, width, 

area? 

!! Read 4 addresses 
1. # 0x00000014 

2. # 0x0000001C 

3. # 0x00000034 

4. # 0x00008014 

!! Memory vals here: 

Address (hex) Value of Word 
Memory 

00000010!
00000014 
00000018 
0000001C 

a!
b!
c!
d!

...! ...!

00000030!
00000034 
00000038 
0000003C 

e!
f!
g!
h!

00008010!
00008014 
00008018 
0000801C 

i!
j!
k!
l!

...! ...!

...! ...!

...! ...!

Accessing data in a direct mapped cache 
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!! 4 Addresses: 

"! 0x00000014, 0x0000001C,  

0x00000034, 0x00008014 

!! 4 Addresses divided (for convenience) 

into Tag, Index, Byte Offset fields 

000000000000000000 0000000001 0100 

000000000000000000 0000000001 1100 

000000000000000000 0000000011 0100 

000000000000000010 0000000001 0100 
       Tag                          Index        Offset 

Accessing data in a direct mapped cache 
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Do an example yourself. What happens? 
!! Chose from: Cache:   Hit, Miss, Miss w. replace 

  Values returned:  a ,b, c, d, e, ..., k, l 

!! Read address 0x00000030 ?  
000000000000000000 0000000011 0000 

!! Read address 0x0000001c ? 

 000000000000000000 0000000001 1100 

...!

Valid!
Tag! 0x0-3! 0x4-7! 0x8-b! 0xc-f!

0!
1!
2!
3!
4!
5!
6!
7!
...!

1! 2! l! k! j! i!

1! 0! h! g! f! e!

Index!
0"

0"

0"
0"
0"

0"

Cache!
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Answers 

!! 0x00000030 a hit 

Index = 3, Tag matches,  

Offset = 0, value = e 

!! 0x0000001c a miss 

Index = 1, Tag mismatch, 

so replace from memory,  

Offset = 0xc, value = d 

!! Since reads, values  

must = memory values  

whether or not cached: 

"! 0x00000030 = e 

"! 0x0000001c = d 

Address (hex) Value of Word 
Memory 

00000010!
00000014 
00000018 
0000001C 

a!
b!
c!
d!

...! ...!

00000030!
00000034 
00000038 
0000003C 

e!
f!
g!
h!

00008010!
00008014 
00008018 
0000801C 

i!
j!
k!
l!

...! ...!

...! ...!

...! ...!
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Block Size Tradeoff (1/3) 

!! Benefits of Larger Block Size 

"! Spatial Locality: if we access a given word, 

we’re likely to access other nearby words 

soon 

"! Very applicable with Stored-Program Concept: 

if we execute a given instruction, it’s likely 

that we’ll execute the next few as well 

"! Works nicely in sequential array accesses too 
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Block Size Tradeoff (2/3) 

!! Drawbacks of Larger Block Size 

"! Larger block size means larger miss penalty 

!! on a miss, takes longer time to load a new block 

from next level 

"! If block size is too big relative to cache size, 

then there are too few blocks 

!! Result: miss rate goes up 

!! In general, minimize  

Average Memory Access Time (AMAT) 

 = Hit Time  

  + Miss Penalty x Miss Rate 
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Block Size Tradeoff (3/3) 

!! Hit Time 

"! time to find and retrieve data from current 

level cache 

!! Miss Penalty 

"! average time to retrieve data on a current level 

miss (includes the possibility of misses on 

successive levels of memory hierarchy) 

!! Hit Rate 

"! % of requests that are found in current level 

cache 

!! Miss Rate 

"! 1 - Hit Rate 
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Extreme Example: One Big Block 

!! Cache Size = 4 bytes  Block Size = 4 

bytes 

"! Only ONE entry (row) in the cache! 

!! If item accessed, likely accessed again 

soon 

"! But unlikely will be accessed again 

immediately! 

!! The next access will likely to be a miss 

again 

"! Continually loading data into the cache but 

discard data (force out) before use it again 

 Cache Data!Valid Bit!
B 0!B 1!B 3!

Tag!
B 2!
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Block Size Tradeoff Conclusions 

Miss 
Penalty 

Block Size!

Increased Miss Penalty 
& Miss Rate 

Average 
Access 

Time 

Block Size!

Exploits Spatial Locality 

Fewer blocks:  
compromises 
temporal locality 

Miss 
Rate 

Block Size!
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Analyzing Multi-level cache hierarchy 

Proc" $2"

D
R

A
M
"

$"

L1 hit "
time"

L1 Miss Rate"
L1 Miss Penalty"

Avg Mem Access Time = !
!L1 Hit Time + L1 Miss Rate * L1 Miss Penalty"

L1 Miss Penalty = !
!L2 Hit Time + L2 Miss Rate * L2 Miss Penalty!

Avg Mem Access Time = !
!L1 Hit Time + L1 Miss Rate * "
!(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)!

L2 hit "
time" L2 Miss Rate"

L2 Miss Penalty"

CS61C L11 Caches (76) Huddleston, Summer 2009 © UCB 

Example 

!! Assume  

"! Hit Time = 1 cycle 

"! Miss rate = 5% 

"! Miss penalty = 20 cycles 

"! Calculate AMAT… 

!! Avg mem access time  

= 1 + 0.05 x 20 

= 1 + 1 cycles 

= 2 cycles 
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Ways to reduce miss rate 

!! Larger cache 

"! limited by cost and technology 

"! hit time of first level cache < cycle time 

(bigger caches are slower) 

!! More places in the cache to put each 

block of memory – associativity 

"! fully-associative 

!! any block any line 

"! N-way set associated 

!! N places for each block 

!! direct map: N=1  
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Typical Scale 

!! L1  

"! size: tens of KB 

"! hit time: complete in one clock cycle 

"! miss rates: 1-5% 

!! L2: 

"! size: hundreds of KB 

"! hit time: few clock cycles 

"! miss rates: 10-20% 

!! L2 miss rate is fraction of L1 misses that 

also miss in L2 

"! why so high? 
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Example: with L2 cache 

!! Assume  

"! L1 Hit Time = 1 cycle 

"! L1 Miss rate = 5% 

"! L2 Hit Time = 5 cycles 

"! L2 Miss rate = 15%  (% L1 misses that miss) 

"! L2 Miss Penalty = 200 cycles 

!! L1 miss penalty = 5 + 0.15 * 200 = 35 

!! Avg mem access time = 1 + 0.05 x 35  

                                     = 2.75 cycles 
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Example: without L2 cache 

!! Assume  

"! L1 Hit Time = 1 cycle 

"! L1 Miss rate = 5% 

"! L1 Miss Penalty = 200 cycles 

!! Avg mem access time = 1 + 0.05 x 200 

                                     = 11 cycles 

!! 4x faster with L2 cache! (2.75 vs. 11) 

!! Cache 

"! 32 KB Instructions and 32 

KB Data L1 caches 

"! External L2 Cache 
interface with integrated 

controller and cache 

tags, supports up to 1 

MByte external L2 cache 

"! Dual Memory 

Management Units (MMU) 

with Translation 

Lookaside Buffers (TLB) 

!! Pipelining 

"! Superscalar (3 inst/cycle) 

"! 6 execution units (2 

integer and 1 double 

precision IEEE floating 

An actual CPU – Early PowerPC 
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An Actual CPU – Pentium M 

32KB I$!

32KB D$!


