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* We have
everything
except control
signals

nPC sel — instr
fetch
clk —> unit

Instruction<31:0>

Rs
ALUctr

MemtoReg

RegWr Rs Rt
—“T 5* s* MemWr
busW Rw Ra Rb
0 RegFile
32
clk!
= 32 WiEn Adr
imm16 z ) Data In
16 i I Data
& clk —] Memory
I I
ExtOp ALUSrc
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“n”=next

*nPC_sel:
“+44”0=PC<-PC+4
“br” 1 = PC <- PC + 4 + {SignExt(Im16) , 00 }

* Later in lecture: higher-level connection between
mux and branch condition

Inst Address
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+ ExtOp: “zero”, “sign” ° MemWr: 1 = write memory
« ALUsrc: 0= regB; ° MemtoReg: 0 = ALU; 1 = Mem
1= immed ° RegDst: 0 = “rt”; 1 = “rd”
* ALUctr: “ADD”, “SUB”, “OR” ° RegWr: 1 = write register
RegDst Rd Rt ALUctr MemtoReg
MemWr
RegWr | Rs Rt
“TH gy
busW Rw Ra Rb
o RegFile
I
clk = 32 [WiEn Adr
imm16 g 1/ Dataln Data
5 Memor
ALUSrc Ik Y
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In

*Fetch the instruction from Instruction
memory: Instruction = M[PC]

*same for
all instructions

nPC sel

imm16

ﬂ CSB1CL L10 CPU Ii: Control & Pipeline (5)

Inst
Memory

Instruction<31:0>

Inst Address
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31 26 21 16 11 6 0

l_op “ s “ rt “ rd “ shamt funct
R[rd] = R[rs] + R[rt]

nPC sel=+4 —| instr = l:strucuon<3l:0>
RegDst=1 fetch I
Rd R K P unit 5
Rs Rt Rd Imml6
ALUctr=ADD
cherl~ Ef];f[ MomtoRea=0
busw | R Ra Ro[busA 32 N\ MemWr=0
~ . > | 32
3 RegFile busB E
k]
ok 32 WiEn Adr
1 14
imm16 " % % Data In Data
clk —] Memory
ALUSre=0

Q! —=
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«PC = PC +4

* This is the same for all instructions except:
Branch and Jump

Inst
Memory

Inst Address

ﬂ imm16
CSB1CL L10 CPU I: Control & Pipeline (7)
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Single Cycle Datapath during Or Inmediate?

26

21 16

0

op | s

[ e ]

immediate |

*R[rt] = R[rs] OR_ZeroExt[Imm]6]

nPC sel=

RegDst=

Rd Rt K

instr
fetch
unit

Rw Ra Rb

£ RegFile

A

]
I
O
\

Rs

nstri

Rt Rd Imml6
ALUctr=
MemtoReg=

WrEn Adr

Data
_ | Memory
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Single Cycle Datapath during Or Immediate?

26 21 16 0
op | rs | rt | immediate |
. =
Rrt] = Rirs] OR ZeroExt[Imm{6]
R — instr ~ T~ A
fetch 2olx =
clk —> unit y i3 "
s Rt Imm16
ALUctr=0]
SRF ;} emtoReg=0
Rw Ra Rb| busA 32 > MemWr=0
busW 3
. >
k) RegFile bysB g
0

WrEn Adr

Data
_ [Memory

ExtOp=zer

Q -
e
CSB1CL L10 CPU Iz Control & Pipeline (9)
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Rw Ra Rb

2 RegFile

f 32 WrEn Adr
Data I 1
ata In Data |
Memory

1k —

ALUSre=1 ¢

ﬂ ExtOp=sign
CSS1CL L10 CPU Il:Control & Pipeline (13)
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. . ” .
1 T 16 31 2 T 1 0
op | rs | rt | immediate | op | rs | et ] immediate |
¢ R[rt] = Data Memory {R[rs] + SignExt[imm16]} *R[rt] = Data Memory {R[rs] + SignExt[imm16]}
’ nstruction<31:0> Y nstruction<31:0>
nPC sel= — instr y nPC _sel=+4 — instr T T
fetch = RegDst=0 fetch 2ol =
unit 2 Rd Rt K= unit B |
\ \ v
Rs Rt Rd Imml6 Rt Rd
ALUctr= ALUctr=,
MemtoReg= Re"WTTIS EF S/F toReg=1
MemWr= bus Rw Ra Rb|busA 32 N Mem
usW
. = 32
32 | RegFile |y g 0
0
m »
32 WrEn Adr clk f 32 WrEn Adr
1 atz ata
7 Data In Data imm16 Data In Data
clk —t Memory clk —t Memory
ExtOp= ALUSrc= ExtOp=sien ALUSrc=1
@ — & .. —~—
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. . . ”
1 T 16 31 26 T 1 0
op | rs | rt | immediate | op | rs | et ] immediate |
» Data Memory {R[rs] + SignExt imm163} = RIrt] «if (R[rs]- R[rt] == 0) then Zero = 1; else Zero = 0
- Instruction<31:0> T Instruction<31:0>
instr nPC sel= ——{ instr
fetch fetch
unit

A
|
)
w
v

Rs

Rt Rd Imml6
ALUctr=
MemtoReg=

MemWr=

32 WiEn Adr
1 Datal
% ata In Data
clk —t Memory
ALUSrc=

[#74 o
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Instruction Fetch Unit at the End of Branch
i_op | rs | rt | immediate |

« if (Equals ==1) then PC =PC + 4 + SignExt[imm16]
*4 ; else PC =PC+4

Inst
Memory

Instruction<31:0>

PC_sel —— i i
uPC_se —’D ... — 1= «What is encoding of
Equal ——p : nPC_SeI?

« Direct MUX select?
« Branch inst. / not branch

« Let’s pick 2nd option

Q: What

nPC_sel zero? MuUx |Ogic gate?

Huddleston, Summer 2009 ® UCB

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements
« meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer
« 2. Select set of datapath components and establish
clocking methodology
« 3. Assemble datapath meeting requirements
« 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

« 5. Assemble the control logic (hard part!)

ﬂ CSB1CL L10 CPU Ii: Control & Pipeline (17)
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op | rs | rt | immediate |

» Data Memory {R[rs] + SignExt imm16£ = R[rt]

Instruction<31:

nPC sel=  — instr

R AN Y
RegDst= - fetc‘h S N =
Rd Rt ©F T unit 218 e
v iV W
Rs

Rt Rd Imml6
ALUctr=
MemtoReg=
MemWr=
32

Rs Rt
3§ ¥

Rw Ra Rb| busA 32

32 RegFile | pysB
32
clk! _
WiEn Adr
imml16 1 Data In
16 1 h Data
Memory
ALUSre=_ ¥
Ext0p=—] =
T 6 1 16
op | rs | rt | immediate |

=z 0) then “=“=1; else “=“= 0

inst Instruction<31:0>
instr I
RegDdt= fetch e O
clk unit 2R |
J
< Rt Rd ml6
ALUctr=x
RegWr=0 Wr=0; 55 Rt EmtoReg=x
x4 ¥
Rw Ra Rb| busA 32 N MemWr=0
busW
" > | 32
32 | RegFile | pysB )
32
¢ 32 WiEn Adr
imm16——y Data In
16 Data
N N Memory
ExtOp=x ALUSrc=0
—
Instruction<31:0>
Inst IS 4 oA A
Memory 219 15 12 |=
= o8 e |y
Adr v v v v
Op Fun Rt s Rd Imml6
Control

nPC_sel RegWr RegDst ExtOp ALUSrc ALUctr MemWr MemtoReg

DATA PATH

Q CSB1CL L10 CPU Iz Control & Pipeline (18)
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A Summary of the Control Signals

=N
See _:flmc 10 0000} 10 0010 We Don’t Care :-)
Appendix A op [ 000000]00 0000[00 1101{ 10 0011 10 1011{00 0100 00 0010\
add | sub | ori | Iw sw_ | beqJ[ jump
| RegDst 1 1 0 0 x x x
ALUSre 0 0 1 1 1 0 X
0 0 0 1 X X X
RegWrite 1 1 1 1 0 0 0
MemWrite 0 0 0 0 1 0 0
nPCsel 0 0 0 0 0 ?
Jump 0 0 0 0 0 o \| 1
ExtOp X X 0 1 1 X X
ALUctr<2:0> | Add_[Subtract| oOr Add_| Add Sub(rﬂcl\ x_/
31 26 21 16 11
R-type op | TS | It | rd | shamt funct add, sub
I-type op | s | It | | ori, Iw, sw, beq
J-type op | target address | jump

ﬂ CS61CL L10 CPU Il: Control & Pipeline (19)
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Boolean Expressions for Controller

RegDst = add + sub

ALUSr¢  =ori+Iw +sw
MemtoReg =lw

RegWrite =add + sub + ori + Iw
MemWrite =sw

nPCsel =beq
Jump = jump
ExtOp =lIw +sw

ALUctr[0] =sub +beq (assume ALUctris 0 ADD, 01: SUB, 10: OR)
ALUctr[1] =or

where,

rtype = ~ops ® ~0p, ® ~0p; ® ~0p, * ~0p, * ~0p,, How do we
ori  =~0ps*~0p,* 0p3°® 0p,* ~0p;* 0P, implement this in
lw = ops®~ops*~op;*~o0p,* op;* op, 2

SW = 0ps®~0p;* 0p3®~0p,* Op;* 0p, gates?

beq =~op;*~op,®~op;* op,* ~op,*~op,
Jjump =~ops® ~op,* ~op;* ~op,* 0p, * ~0p,

add = rtype * func; * ~func, * ~func, * ~func, * ~func, * ~func,

ﬂ sub = rtype ® funcs ® ~func, ® ~func, * ~func, ® func, ¢ ~func,
CS61CL L10 CPU Ii: Control & Pipeline (20) Huddleston, Summer 2009 © UCB

Controller Implementation

opcode  func

|— RegDst
add — ALUSrc
sub — MemtoReg
ori | RegWrite

“AND” logic Iw “OR” logic [— MemWiite

|— nPCsel
sw

— Jump
beq [— ExtOp
jump | ALUCtr[0]

|— ALUctr[1]

Q CSB1CL L10 CPU Ii: Control & Pipeline (21)
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Processor Performance

« Can we estimate the clock rate (frequency) of
our single-cycle processor? We know

1 cycle per instruction
« 1w is the most demanding instruction.

» Assume these delays for major pieces of the
datapath:
- Instr. Mem, ALU, Data Mem : 2 ns each, regdfile 1 ns
- Instruction execution requires: 2 +1+2+2+1=8ns

- =>125 MHz
* What can we do to improve clock rate?

« Will this improve performance as well?

+ We want increases in clock rate to result in
programs executing quicker.

CSG1CL L10 CPU Il: Control & Pipeline (22) Huddleston, Summer 2009 © UCB

Gotta Do Laundry

¢ Ann, Brian, Cathy, Dave
each have one load of
cIothes to wash, dry, fold,

BEOD
and put away

» Washer takes 30 minutes '

* Dryer takes 30 minutes

°

* “Folder” takes 30 minutes

- “Stasher” takes 30 minutes to put ﬁ

Huddleston, Summer 2009 © UCB

ﬂ clothes into drawers
CSS1CL L10 GPU I Control & Pipeine (23)

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM

I ] I ] I ] I L I ] I L I ] I |
30'30'30'30'30'3Tq'3o'3o'3o'3o'30'3o'30'30'30'30'
. ime
oY S
B A__.
& 835 A .
s A

x>0 0 -

=0 Q~0

*Sequential laundry takes
Q 8 hours for 4 loads

CSB1CL L10 CPU Iz Control & Pipeline (24)
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Pipelined Laundry

6PM 7 8 9 10 1 12 1 2AM

T .
3030 30 30 30 30 30 Time

.
a|& 'ﬁﬁ
& 88
|8 B84
B @83 A
d

¢ Pipelined laundry takes

General Definitions

+Latency: time to completely execute a
certain task

- for example, time to read a sector from
disk is disk access time or disk latency

* Throughput: amount of work that can
be done over a period of time

Pipelining Lessons (1/2)

6PM 7 8 9 . Plpellnm? doesn’t help
I = latenc smgletta?k |:
- ime  helps %Lroug hput of entire
FEEE‘:l_I workload

3030 30 30 30 30 30
3 . * Multiple tasks operating
& = 4& simultaneously using

B 5 ﬁ different resources
= « Potential speedup =

] j{ Number pipe stages
@ « Time to “fill” pipeline and
time to “drain” it reduces

speeduf:
2.3X v. 4X in this example

>0 0 -

SoQ~0

ﬂ 3.5 hours for 4 loads!

CSG1CL L10 CPU Il: Control & Pipeline (25) Huddleston, Summer 2009 © UCB
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Pipelining Lessons (2/2) Steps in Executing MIPS Pipelined Execution Representation
6PM 7 8 9 * Suppose new 1) IFtch: Instruction Fetch, Increment PC Time
[ — Washer takes 20 FiorlDed TExeclm WB

L e~ — = N Y U A AP 2) Dcd: Instruction Decode, Read [iFtchlDed [Exec|Mem| w |
: 3303030303030 minutes. How much Registers [IFtch[Dcd [Exec[Mem] WB |
il S ﬁ faster is pipeline? 3) Exec: [IFtch[Dcd [Exec[Mem][ WB |

& = k « Pipeline rate limited Mem-ref: Calculate Address [1IFtchlDcd [Exec|Mem] wB |
Cr’ 1) gya % pipeline Arith-log: Perform Operation [IFtchlDcd [Exec|Mem] WB |
da & A 4) Mem: [iIFtch[Dcd JExec]Mem] WB |
e * Unbalanced lengths Load: Read Data from Memor
r of pipe stages Store: Write Data to Memory y * Every instruction must take same number

reduces speedup ) of steps, also called pipeline “stages”, so
ﬂ 5) WB: Write Data Back to Register onme will go idle sometimes
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Review: Datapath for MIPS Graphical Pipeline Representation Example
l @ (In Reg, right half highlight read, left half write) * Suppose 2 ns for memory access, 2 ns for
o S5>[92 Time (clock cycles) ALU operation, and 1 ns for register file
= B g R, s5 E read or write; compute instruction rate
= O = © £ H H
[} E  — oo = - -
£ £ , * Nonpipelined Execution:
[i Load PP .
«1w: IF + Read Reg + ALU + Memory + Write Reg
Add =2+1+2+2+1=8ns
1. Instruction 2. Decode/ 5. Write

3. Execute 4. Memory™p. -add: IF + Read Reg + ALU + Write Reg

&Qﬂo T, ) S -

Fetch Register Read Store 2+1+2+1=6
s . . =2+1+2+1=6bns
* Use datapath figure to represent pipeline : (recall 8ns for single-cycle processor)
Sub
[IFtch]Dcd |Exec|Mem| wB | o * Pipelined Execution:
D$ l:
Isl l 1 J_DS“LL - l Or » Max(IF,Read Reg,ALU,Memory,Write Reg) =2 ns
CS61CL L10 CPU II: Control & Pipeline (31) Huddleston, Summer 2009 © UCB CS61CL L10 CPU Ii: Control & Pipeline (32) Huddleston, Summer 2009 © UCB CS61CL L10 CPU Ii: Control & Pipeline (33) Huddleston, Summer 2009 © UCB
Pipeline Hazard: Matching socks in later IoLd Administrivia Problems for Pipelining CPUs
o Mi ; « Limits to pipelining: Hazards prevent next
6PM 7 8 9 10 M 12 1 2AM Midterm Solutions instruction from executing during its
—FeEe= | Time + Regrade Requests designated clock cycle
T, 30303030303030 . - Structural hazards: HW cannot support some
a|@ 5 3 j& * HW7 (Design Document) combination of instructions (single person to
s = A fold and put clothes away)
k @ =] A - Control hazards: Pipelining of branches causes
@ .@ k later instruction fetches to wait for the result of
lo) @ .—I . ﬁ the branch
r ) = ¢ « Data hazards: Instruction depends on result of
d| B =) ! ﬁ prior instruction still in the pipeline (missing
e & 5 ﬁ sock)
r * These might result in pipeline stalls or
ﬂ ﬂ Q;‘bubbles” in the pipeline.

CS61CL L10 CPU II: Control & Pipeline (34) Huddleston, Summer 2009 © UCB CS61CL L10 CPU II: Control & Pipeline (35) Huddleston, Summer 2009 © UCB CS61CL L10 CPU Ii: Control & Pipeline (36) Huddleston, Summer 2009 © UCB




Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

| ~

: Load E‘ il

t |instr1 2>

i Instr 2

? Instr 3 IE ‘El

2 Instr 4 IE

Huddleston, Summer 2009 ® UCB

@ead same memory twice in same clock cycle

S61CL L10 CPU Ii: Control & Pipeline (37)

Structural Hazard #1: Single Memory (2/2)

*Solution:

+ infeasible and inefficient to create
second memory

+ (We’ll learn about this more next week)

+ so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

» have both an L1 Instruction Cache and
an L1 Data Cache

*need more complex hardware to control
when both caches miss

ﬂ CSB1CL L10 CPU Ii: Control & Pipeline (38)
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Structural Hazard #2: Registers (1/2

Time (clock cycles)

|

n

f sw

I (Instr 1

O |Instr 2

; Instr 3

‘: Instr 4

zan we read and write to Fegiéters simultaneously?

GSB1GL L10 GPU Il: Control & Pipeline (39) Huddleston, Summer 2009 © UCB

Structural Hazard #2: Registers (2/2)

* Two different solutions have been used:
1) RegFile access is VERY fast: takes less
than half the time of ALU stage

- Write to Registers during first half of each
clock cycle

- Read from Registers during second half of
each clock cycle

2) Build RegFile with independent read and
write ports

*Result: can perform Read and Write
during same clock cycle

CSG1CL L10 CPU Il: Control & Pipeline (40) Huddleston, Summer 2009 © UCB

Control Hazard: Branching (1/8)

Time (clock cycles)

|
n > 14 D$ [Re
t (Instr1 Ree '
r.
Instr 2 y
(o] )
. Instr 3 A
d vInstr 4 '
e

here do we do the compare for the branch?

GSB1CL L10 GPU Il: Control & Pipeline (41) Huddleston, Summer 2009 © UCB

Control Hazard: Branching (2/8)

*We had put branch decision-making
hardware in ALU stage

+ therefore two more instructions after the

branch will always be fetched, whether or
not the branch is taken

« Desired functionality of a branch

- if we do not take the branch, don’t waste
any time and continue executing
normally

+ if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

Q CSB1CL L10 CPU Iz Control & Pipeline (42)

Huddleston, Summer 2009 © UCB

Control Hazard: Branching (3/8)

«Initial Solution: Stall until decision is
made

- insert “no-op” instructions (those that
accomplish nothing, just take time) or
hold up the fetch of the next instruction
(for 2 cycles).

» Drawback: branches take 3 clock cycles
each (assuming comparator is put in ALU
stage)

ﬂ CS61CL L10 CPU Il: Control & Pipeline (43)
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Control Hazard: Branching (4/8)

» Optimization #1:

- insert special branch comparator in
Stage 2

»as soon as instruction is decoded
(Opcode identifies it as a branch),
immediately make a decision and set the
new value of the PC

- Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

« Side Note: This means that branches are
idle in Stages 3, 4 and 5.

ﬂ CSB1CL L10 CPU Ii: Control & Pipeline (44)
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Control Hazard: Branching (5/8)

Time (clock cycles)

beq

Instr 1

T~ 35 -

Instr 2

Instr 3

Reg

Instr 4

oa=0

Branch comparator r:novéd to Decode stage.

GSB1GL L10 GPU Il: Control & Pipeline (45) Huddleston, Summer 2009 © UCB




|
n
s
t
r.

(o)
r
d
e
r

ﬂ CS61CL L10 CPU Il: Control & Pipeline (46)

Control Hazard: Branching (6a/8)

» User inserting no-op instruction

Impact: 2 clock cycles pler branch instruction =
slow

Huddleston, Summer 2009 ® UCB

Control Hazard: Branching (6b/8)

« Controller inserting a single bubble

|
n
s
t
r.

(0]
r
d
e . .
r Impact: 2 clock cycles pler branch instruction =
slow

@ CSB1CL L10 CPU Ii: Control & Pipeline (47)
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ﬂ - Jumps also have a delay slot...

Control Hazard: Branching (8/8)

*Notes on Branch-Delay Slot

+ Worst-Case Scenario: can always put a
no-op in the branch-delay slot

- Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs

- compiler/assembler must be very smart in
order to find instructions to do this

- usually can find such an instruction at least
50% of the time

CSG1CL L10 CPU Il: Control & Pipeline (49) Huddleston, Summer 2009 © UCB

Example: Nondelayed vs. Delayed Bra

MAL TAL
Nondelayed Branch Delayed Branch

or $8, $9 ,$10 add $1 ,$2,$3
add $1 ,$2,$3 sub $4, $5,%6
sub $4, $5,%6 beq $1, $4, Exit

beq $1, $4, Exit or &8, $9 ,$10

xor $10, $1,%11 xor $10, $1,$11

Exit:

@xz. b
CSB1CL L10 CPU Ii: Control & Pipeline (50)
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ST~ 35 -

oaoa=0

Data Hazards (2/2)

ﬂ CSG1CL L10 CPU Il: Control & Pipeline (52 ¢ ¢ ¢ Huddleston, Summer 2009 © UCB

* Data-flow backward in time are
hazards

Time (clock cycles)

IF_: ID/RI

add $t0,5t1,$t2] 15 J{[ree [}l os |
sub $t4,5t0,5t3
and $t5,5t0,5t6
or $t7,$t0,$t8

xor $t9,$t0,$t10

=

Data Hazard Solution: Forwarding

» Forward result from one stage to another

IF_:IDIRF

add $t0,$t1,5t2[ 15 [{[ree]

sub $t4,$t0,$t3

and $t5,$t0,$t6

or $t7,5t0,5t8

gl

xor $t9,$t0,$t10

ﬂ “or” hazard solved by register hardware

Huddleston, Summer 2009 © UCB

Control Hazard: Branching (7/8)

* Optimization #2: Redefine branches

+ Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

* New definition: whether or not we take
the branch, the single instruction

immediately following the branch gets
executed (called the branch-delay slot)

*The term “Delayed Branch” means
we always execute inst after branch

QThis optimization is used with MIPS

GSB1GL L10 GPU Il: Control & Pipeline (48) Huddleston, Summer 2009 © UCB

Data Hazards (1/2)

«Consider the following sequence of
instructions

add $t0, $t1, $t2
sub $t4, $t0 ,$t3
and $t5, $t0 ,$t6
or $t7, $t0 ,$t8

xor $t9, $t0 ,S$tl0

Q CSB1CL L10 CPU I: Control & Pipeline (51)
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Data Hazard: Loads (1/4)

« Dataflow backwards in time are hazards

! IDIRE

| MEfM WB

IF
Iw $t0,0($t1)| s |
sub $t3,$t0,$t2

- Can’t solve all cases with forwarding

* Must stall instruction dependent on load,
then forward (more hardware)

GSB1GL L10 GPU Il: Control & Pipeline (54) Huddleston, Summer 2009 © UCB




Data Hazard: Loads (2/4) (Data Hazard: L oads (3/4) \ Data Hazard: Loads (4/4)

* Hardware stalls pipeline sInstruction slot after a load is called « Stall is equivalent to nop
- Called “interlock” “load delay slot” ;
o Iw $t0, 0($t1) {

« If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

«If the compiler puts an unrelated b $3.5t0 $12
instruction in that slot, then no stall sub $t3,5t0.$
and $t5,$t0,5t4

*Letting the hardware stall the instruction
in the delay slot is equivalent to putting
or $t7,5t0,5t6 a nop in the slot (except the latter uses or $7,5t0,5t6

ﬂ CSB1CL L10 CPU Il: Control & Pipeline (55) Huddleston, Summer 2009 © UCB ﬂ Huddleston, Summer 2009 © UCB Q GSB1CL L10 CPU I: Control & Pipeline (57) Huddleston, Summer 2009 © UCB
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IF_: ID/RF

Iw $t0, 0($t1)
sub $t3,$t0,$t2

and $t5,5t0,5t4

nop

m

<IT

Things to Remember “And in Conclusion..”

Summary: Single-cycle Processor

°5 steps to design a processor . L L .
+ 1. Analyze instruction set > datapath requirements * Optimal P'Pe_lme ] *Pipeline challenge is hazards
« 2. Select set of datapath components & establish clock - Each stage is executing part of an - Forwarding helps w/many data hazards
methodology instruction each clock cycle. .
* 3. Assemble datapath meeting the requirements + One instruction finishes during each clock - Delayed branch helps with control hazard
+ 4. Analyze implementation of each instruction to cycle. in 5 stage pipeline
(rj:g:?srg:ntfaiestfté?? of control points that effects the + On average, execute far more quickly. + Load delay slot / interlock necessary
<5. A le th | logi Processor . i .
5 Assemble ¢ Li;';";ﬁ,’j’aﬁfff Tapat What makes this work? «More aggressive performance:
Memory| « Similarities between instructions allow us to - Superscalar

« Design Circuits N >
use same stages for all instructions

D: h .
Output (generally). « Out-of-order execution

» Each stage takes about the same amount of
time as all others: little wasted time.

ﬂ CSG1CL L10 CPU Il: Control & Pipeline (58) Huddleston, Summer 2009 © UCB GSB1CL L10 GPU Il: Control & Pipeline (59) Huddleston, Summer 2009 © UCB
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Bonus slides _RTL: The Add Instruction _A Summary of the Control Signals (1/2)

31 26 21 16 11 6 0 inst Register Transfer
These are extra slides that used to be e — ————— add Rird] - Rirs] + Rirtl; PC < PC + 4
incl uded II'I Iectu r.e nOteS‘, but have ) ) ) ) ) ) ALUsrc = RegB, ALUctr = “ADD”, RegDst = rd, RegWr, nPC_sel = “+4”
been moved to this, the “bonus” area sub RIrd] < R[rs] - Rrt]; PC < PC + 4
to serve as a Supplement' add rd 14 rs 4 rt ALUsrc = RegB, ALUctr = “SUB”, RegDst = rd, RegWr, nPC_sel = “+4”
+The slides will appear in the order they *MEM[PC] Fetch the instruction ori RIrt] = Rlrs] + zero_extmmi6);  PCo=PC+4
would have in the normal presentation from memory ALUsre = Im, Extop = “Z” ALUctr = “OR”, RegDst = rt,RegWr, nPC_sel =*+4”
Iw R[rt] < MEM][ R{[rs] + sign_ext(Imm16)]; PC < PC|+4

*R[rd] = R[rs] + R[rt] The actual operation ALUsre = Im, Extop = “sn’, ALUctr = “ADD",
MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

‘PC=PC+4 Calculate the next
. - y SW MEM] R[rs] + sign_ext(Imm16)] < R[rs]; PC < PC|+4
instruction’s address :
ALUsrc = Im, Extop = “sn”, ALUctr = “ADD”, MemWr, nPC_sel = “+4”
beq if (R[rs] == R[rt] ) then PC « PC + sign_ext(Imm16)] Il 00 else PC < PC + 4
ﬂ ﬂ Q nPC_sel = “br”, ALUctr = “SUB”
CS61CL L10 CPU Ii: Control & Pipeline (62) Huddleston, Summer 2009 © UCB CS61CL L10 CPU Ii: Control & Pipeline (63) Huddleston, Summer 2009 © UCB
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The Single Cycle Datapath during Jump

31 26 25 Q

J-type op | target address I jump
*New PC = { PC[31..28], target address, 00 }
Jump= Instruction<31:0>
nPC_sel= —Instruction oA A A A
|Rd |Rt FetchUnit| |5 [ |2 E B
T AN i
= Rs Rt ALUctr = t Rs Rd Imml6 TA26
RegWr—l 5 5)( 5 MemtoReg =
basW Rw Ra Rp|—2us2
= 3232-bit 2
32 Registers [busB/__ 1o
= 32 <
£
= =
Z |[——1/ Dataln
imm16— = g 32 32
& C
ALUSrc =

@ Eons
.
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The Single Cycle D h during J

31 26 25 qQ
J-type op target address Jjump
*New PC ={ ..28], target address, 00 }
Jump=1 Instruction<31:0>
nPC_sel=? Instruction OO FA AN A A
|Rd Rt FetcechUnit| |5 |2 |2 B [&
RegDst = x 0 k—0| 2 A 7 YA
= Rs Rt ALUctr =x Rt Rs_Rd Imml6 TA26
RegWr = 5* 5* emtoReg = x
_ Rw Ra Rb|—244
. 32 32-bit 32
32 Registers [ busB, 0
32 =
E 3
= WrEn Adr
1/ DatalIn J
imm16 ’\) 32 Data
16 C Memory
ALUSrc=x

T
[#74 ton
e
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Instruction Fetch Unit at the End of Jump

31 26 25 Q
J-type op | target address I jump
*New PC = { PC[31..28], target address, 00 }
J“mp Inst
Memory Instruction<31:0>
nPC_sel———p A

Zero——

[nPC_MUX _sel Query

” » Can Zero still
<

N &:H-* get asserted?
(Ew_ 0] 4 (MSBs)
<
&
N 1
@

S XN\ ¥

» Does nPC_sel
CIk need to be 0?
« If not, what?

mml6
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Historical Trivia

*First MIPS design did not interlock and
stall on load-use data hazard

* Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

* Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

@ CSB1CL L10 CPU Ii: Control & Pipeline (68)
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Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 1 12 1 2AM

o = | Time
30303030303030

& 5] puewe” : SR
& W3

s 8.
0)

®

®

x>0 0 -

=0 Q~0

ﬂ CS61CL L10 CPU Il: Control & Pipeline (70)
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Superscalar Laundry: Parallel per stage

6PM 7 8 9 10 11 12 1 2AM

3030303030 Time
S5 A (light clothing)
&8 A (dark clothing)
&[5 A (very dirty clothing)

B @5 A (light clothing)
T8 A (dark clothing)

& (19 ;‘& (very dirty clothing)

x>0 0 -

S~ Q~0
6
]

@ CSB1CL L10 CPU Ii: Control & Pipeline (71)
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¢ A denends on D: rest continue: need mare

* More resources. HW to match mix of narallel

Instruction Fetch Unit at the End of Jump

31 26 25 Q
J-type op | target address I Jjump
*New PC ={ PC[31..28], target address, 00 }
Jump —— Inst
Memory Instruction<31:0>
nPC_sel——p dr

Zero——

nPC_MUX_sel |

How do we modify this
to account for jumps?

Huddleston, Summer 2009 © UCB

difterant from praeessor cases so far. We have not.had ummer 200 o ucs
ieri ucti P! X

Pipeline Hazard: Matching socks in later IoLd

6PM 7 8 9 10 11 12 1 2AM

e —— .
3030 30 30 30 30 30 Time

5] e,

3 @5
& 05

& A
&

&

&

x>0 0 -

.
—_—

A
AN

~oQ~0

A depends on D; stall since folder tied up; Note this is much

Q CSB1CL L10 CPU Iz Control & Pipeline (72)

Superscalar Laundry: Mismatch Mix
6PM 7 8 9 10 11 12 1 2AM

e :
3030 30 30 30 30 30 Time

;
ai&@5) A (light clothing)

== .
k| 28

=
°|® @3 A (ightclothing)
«|& (J§° & (darkclothing)
v O8] . .

B 5) ﬁ (light clothing)
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