inst.eecs.berkeley.edu/~csb6lc

CS61CL : Machlne Structures
Lecture #9 — Single Cycle CPU Design
2009 07-22

Jeremy Huddleston

Q CS61CL L09 Single Cycle CPU Design (1) Huddleston, Summer 2009 © UCB

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

<~ y iy gt . e ST
Mul.¢|1@\|¢l||®\|\ R R

! &

ot I e e

Draw the FSM... _ o, 7
/

R
@Q@
©/o

Assume state transitions are controlled by the clock:
2 on each clock cycle the machine checks the inputs and moves

to a new state and produces a new output...
CS61CL L09 Single Cycle CPU Design (2) Huddleston, Summer 2009 © UCB

Hardware Implementation of FSM

.. Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

1 o

> OUTPUT

precet (7<) rert (d)

Stte st
TPt
CL
[
— ‘k —> OUTRUT
Combinational logic circuit is WS
used to implement a function 2 4—ax

maps from present state and Ps 4
@ input to next state and output. i

CS61CL L09 Single Cycle CPU Design (3) Huddleston, Summer 2009 © UCB

Register Details...What’s inside?

th dner Ay A
e
Register “Yg4— = F\E Tk - - - |FF
L Q J l cee
{n | q/n—l C[h»‘)_ @O

e n instances of a “Flip-Flop”

 Flip-flop name because the output flips and
flops between and 0,1

D is “data”, Q is “output”

Also called “d-type Flip-Flop”

CS61CL L09 Single Cycle CPU Design (4) Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder LSB...

dp b() So €4
+ b3 b2 b1 b() O 1|1 O
33 SZ Sl SO 1 0 1 0
1 110 1
So —
C1 —

@ CS61CL L09 Single Cycle CPU Design (5) Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (1/2)...

Si

Ci+1

@ CS61CL L09 Single Cycle CPU Design (6)

a; b; ¢ |Si Ciu
O 0 010 0
O 0 1]1 0
O 1 01 0
O 1 110 1
1 0 O]1 0

O 110 ‘

1 010

I 11

Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (2/2)...

a D_*
be Se
c. ™

S; = XOR(CLL', bi, Ci)
Cit1 = MAIJ(a;, b;, ¢;) = a;b; + a;c; + b

@ CS61CL L09 Single Cycle CPU Design (7)

Huddleston, Summer 2009 © UCB

N 1-bit adders = 1 N-bit adder

s
+1
+

cnﬁ+ -
T T

Administrivia

 Midterm handed back today

16 1

14 -

12 1

10 1

frequency
(00]

0 T
<10 <20 <30 <40 <50 <60 <70 <80 <90 <100 <110 <120 <130 <140 <150

ﬂ CS61CL L09 Single Cycle CPU Design (9) Huddleston, Summer 2009 © UCB

Five Components of a Computer

, o T \

|

: : Computer Keyboard,

| | Devices Mouse

| Processor, (Mgg;ﬁ/rey) r Disk

| \

| | P Input (where

! Control | (where | programs,

I : ' : programs, OUtpUt data live

| | datalive | when not

| |Datapath | when running)

| | running) Display,
! .

y Printer

@ CS61CL L09 Single Cycle CPU Design (10) Huddleston, Summer 2009 © UCB

The CPU

* Processor (CPU): the active part of the
computer, which does all the work
(data manipulation and decision-
making)

e Datapath: portion of the processor

which contains hardware necessary to
perform operations required by the
processor (the brawn)

e Control: portion of the processor (also

in hardware) which tells the datapath
what needs to be done (the brain

@ CS61CL L09 Single Cycle CPU Design (11) Huddleston, Summer 2009 © UCB

Stages of the Datapath : Overview

* Problem: a single, atomic block which
“executes an instruction” (performs ali
necessary operations beginnin%with
fetching the instruction) would be too
bulky and inefficient

e Solution: break up the process of

“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

- smaller stages are easier to design

- easy to optimize (change) one stage
without touching the others

CS61CL L09 Single Cycle CPU Design (12) Huddleston, Summer 2009 © UCB

Stages of the Datapath (1/5)

* There is a wide variety of MIPS
instructions: so what general steps do
they have in common*

e Stage 1: Instruction Fetch

- no matter what the instruction, the 32-bit

instruction must first be fetched from
memory (the cache-memory hierarchy)

- also, this is where we Increment PC

(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

@ CS61CL L09 Single Cycle CPU Design (13) Huddleston, Summer 2009 © UCB

Stages of the Datapath (2/5)

e Stage 2: Instruction Decode

- upon fetching the instruction, we next
gather data from the fields (decode ali
necessary instruction data)

- first, read the opcode to determine
instruction type and field lengths

» second, read in data from all necessary
registers

- for add, read two registers
- for addi, read one register

- for jal, no reads necessary

@ CS61CL L09 Single Cycle CPU Design (14) Huddleston, Summer 2009 © UCB

Stages of the Datapath (3/5)

e Stage 3: ALU (Arithmetic-Logic Unit)
 the real work of most instructions is done
here: arithmetic (+, -, *, /), shifting, logic (&,
[), comparisons (s1t)
- what about loads and stores?
- 1w $t0, 40($tl)

- the address we are accessing in memory = the
value in $t1 PLUS the value 40

- so we do this addition in this stage

@ CS61CL L09 Single Cycle CPU Design (15) Huddleston, Summer 2009 © UCB

Stages of the Datapath (4/5)

e Stage 4: Memory Access

- actually only the load and store
instructions do anything during this
stage; the others remain idle during this
stage or skip it all together

* since these instructions have a unique

step, we need this extra stage to account
for them

- as a result of the cache system, this
stage is expected to be fast

@ CS61CL L09 Single Cycle CPU Design (16) Huddleston, Summer 2009 © UCB

Stages of the Datapath (5/5)

e Stage 5: Register Write

* most instructions write the result of
some computation into a register

- examples: arithmetic, logical, shifts,
loads, sit
- what about stores, branches, jJumps?

- don’t write anything into a register at the
end

- these remain idle during this fifth stage or
skip it all together

@ CS61CL L09 Single Cycle CPU Design (17) Huddleston, Summer 2009 © UCB

Generic Steps of Datapath

Y ——

ﬁ
o

registers

ﬂ
w

-
~—=

J

Instruction
memory
Data
memory

imm
1

N 4
L 4 L 4 1L 4 »

1.vlnstruction ' 2 Decode/

5. Reg.
Fetch Register 3. Execute 4. Memory Write
Read

@ CS61CL L09 Single Cycle CPU Design (18) Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (1/3)

eadd $r3,$rl,$r2
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an add, then
read registers $rl and $r2

- Stage 3: add the two values retrieved in
Stage 2

- Stage 4: idle (nothing to write to memory)

- Stage 5: write result of Stage 3 into register
Sr3

@ CS61CL L09 Single Cycle CPU Design (19) Huddleston, Summer 2009 © UCB

Example: add Instruction

3 % feg[1]
é g» 1—» 2 [1]+reg[2;‘
o S
S5 & % o)
= 2 1egl2]
2E

3
3

add r3, r1, r2

@ CS61CL L09 Single Cycle CPU Design (20) Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (3/3)

°*SW Sr3, 17(Srl)
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s a sw, then
read registers $rl and $r3

- Stage 3: add 17 to value in register $rl
(retrieved in Stage 2)

- Stage 4: write value in register $r3

(retrieved in Stage 2) into memory
address computed in Stage 3

- Stage 5: idle (nothing to write into a
register)

ﬂ CS61CL L09 Single Cycle CPU Design (21) Huddleston, Summer 2009 © UCB

Example: sw Instruction

eg[1]

—_
¢)
=
—h
[I—
+
—h

registers

instruction
memory

Data
r3 memory~

_:}.

SW r3, 17(r1)
MEM[r1+17]<

@ CS61CL L09 Single Cycle CPU Design (22) Huddleston, Summer 2009 © UCB

Why Five Stages? (1/2)

e Could we have a different number of
stages?

- Yes, and other architectures do

 So why does MIPS have five if

instructions tend to idle for at least
one stage?

* The five stages are the union of all the
operations needed by all the instructions.

* There is one type of instruction that uses
all five stages: the load

ﬂ CS61CL L09 Single Cycle CPU Design (23) Huddleston, Summer 2009 © UCB

Why Five Stages? (2/2)

°lw Sr3, 17(Srl)
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s a 1w, then
read register $ril

- Stage 3: add 17 to value in register $rl
(retrieved in Stage 2)

- Stage 4: read value from memory
address compute in Stage 3

- Stage 5: write value found in Stage 4 into
register $r3

ﬂ CS61CL L09 Single Cycle CPU Design (24) Huddleston, Summer 2009 © UCB

Example: 1w Instruction

o 1e9l]

- ()

S € S 8o <

3 £ - S5 %

cE GE) T
S
LI
=

%

LW r3, 17(r1)

@ CS61CL L09 Single Cycle CPU Design (25) Huddleston, Summer 2009 © UCB

Datapath Summary

* The datapath based on data transfers
required to perform instructions

* A controller causes the right transfers

to happen l
(%))
ol £5 11 2 -
e 2
T Imm |
opcode, funct

@ CS61CL L09 Single Cycle CPU Design (26) Huddleston, Summer 2009 © UCB

. For each instruction, how d trol th
CPU clocking (1/2) fiow of information though the datapath?

Single Cycle CPU: All stages of an
instruction are completed within one
long clock cycle.

* The clock cycle is made sufficient long to

allow each instruction to complete all
stages without interruption and within

one cycle.
1. Instruction 2. Decode/ :: B :é.Reg. :
Fetch Register 3. Execute 4. Memory Write

Read

@ CS61CL L09 Single Cycle CPU Design (27) Huddleston, Summer 2009 © UCB

= For each instruction, how do we control the
C P U C I OoC kl n g (2/ 2) flow of information though the datapath?

e Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

* The clock is made as long as the slowest

stage.
1. Instruction 2. Decode/ 5. Reg. '
Fetch Register 3. Execute 4. Memory Write

Read

- Several significant advantages over
single cycle execution: Unused stages In
a particular instruction can be skipped
OR instructions can be pipelined

(overlapped).
@ CS61CL L09 Single Cycle CPU Design (28) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

* 1. Analyze instruction set architecture (ISA)
=> datapath requirements
- meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer

e 2. Select set of datapath components and establish
clocking methodology

* 3. Assemble datapath meeting requirements

e 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

* 5. Assemble the control logic (hard part!)

Q CS61CL L09 Single Cycle CPU Design (29) Huddleston, Summer 2009 © UCB

Review: The MIPS Instruction Formats

e All MIPS instructions are 32 bits long. 3 formats:

31 26 21 16 11 6 0
- R-type op rs rt rd shamt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
. |_type 31 26 21 16 0
op rs rt
. J-type " 6 blts26 5 bits 5 bits 16 bits .
op target address
6 bits 26 bits

* The different fields are:
- op: operation (“opcode”) of the instruction
* rs, rt, rd: the source and destination register specifiers
- shamt: shift amount
: selects the variant of the operation in the “op” field
: address offset or immediate value

@ - target address: target address of jJump instruction

CS61CL L09 Single Cycle CPU Design (30) Huddleston, Summer 2009 © UCB

The MIPS-lite Subset for today

« ADDU and SUBU

26 21 16 11 6 0
eaddu rd,rs,rt op rs rt rd shamt funct
6 bit 5 bit 5 bit 5 bit 5 bit 6 bit
.subu rd,rs,rt its its its its its its
= . 31 26 21 16 0
 OR Immediate: —
op rs rt immediate
eori rt,rs,immlé6 6 bits 5 bits 5 bits 16 bits
* LOAD and 31 26 21 16 0
STORE WO rd op rs rt immediate
elw rt,rs,imml6 6 bits 5 bits 5 bits 16 bits
esw rt,rs,immlé6
e BRANCH: 31 26 21 16 0
_ op IS rt immediate
*beq rs,rt,immlée i Suis b 16 bits

@ CS61CL L09 Single Cycle CPU Design (31)

Huddleston, Summer 2009 © UCB

ALU Needs for MIPS-lite + Rest of MIPS

e Addition, subtraction, logical OR, ==:

ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] - R[rt]; ...

ORI R[rt] = R[rs] | zero ext(Imml6)...
BEQ i1f (R[rs] == R[rt])...

* Test to see if output == 0 for any ALU
operation gives == test. How?

 P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

(dALU follows chap 5

CS61CL L09 Single Cycle CPU Design (32) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

e 1. Analyze instruction set architecture (ISA)
=> datapath requirements
- meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer

» 2. Select set of datapath components and establish
clocking methodology

* 3. Assemble datapath meeting requirements

* 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

* 5. Assemble the control logic (hard part!)

w CS61CL L09 Single Cycle CPU Design (33) Huddleston, Summer 2009 © UCB

What Hardware Is Needed? (1/2)

* PC: a register which keeps track of
memory addr of the next instruction

 General Purpose Registers
- used in Stages 2 (Read) and 5 (Write)
* MIPS has 32 of these

 Memory
- used in Stages 1 (Fetch) and 4 (R/W)

- cache system makes these two stages as
fast as the others, on average

ﬂ CS61CL L09 Single Cycle CPU Design (34) Huddleston, Summer 2009 © UCB

What Hardware Is Needed? (2/2)

e ALU
- used in Stage 3

- something that performs all necessary
functions: arithmetic, logicals, etc.

- we’ll design details later

* Miscellaneous Registers

 In implementations with only one stage per

clock cycle, registers are inserted between
stages to hold intermediate data and control
signals as they travels from stage to stage.

* Note: Register is a general purpose term
meaning something that stores bits. Not all

@ registers are in the “register file”.

CS61CL L09 Single Cycle CPU Design (35) Huddleston, Summer 2009 © UCB

Combinational Logic Elements (Building Blocks)

 Adder ‘Carryln
A 32
KEJT Sum
B—5—1

> CarryOut

«ALU

N
)T Result
... ="

CS61CL L09 Single Cycle CPU Design (36) Huddleston, Summer 2009 © UCB

Storage Element: Idealized Memory

° Memory (idea“zed) Write Enalble ‘Address

* One input bus: Data In

- One output bus: Data Out Da;ale = Data;z)‘}t -
« Memory word is found by: CKk

- Address selects the word to put on Data Out

- Write Enable = 1: address selects the memory
word to be written via the Data In bus

e Clock input (CLK)

- The CLK input is a factor ONLY during write
operation

- During read operation, behaves as a combinational
logic block:

@ - Address valid = Data Out valid after “access time.”

CS61CL L09 Single Cycle CPU Design (37) Huddleston, Summer 2009 © UCB

Storage Element: Register (Building Block)

e Similar to D Flip Flop except

o Write Enable
* N-bit input and output
- Write Enable input Data In Data Out
. N N
 Write Enable:
- negated (or deasserted) (0): clk

Data Out will not change

- asserted (1):

Data Out will become Data In on positive
edge of clock

@ CS61CL L09 Single Cycle CPU Design (38) Huddleston, Summer 2009 © UCB

Storage Element: Register File

* Register File consists of 32 registers: RWRA RB
- Two 32-bit output busses: Write Enable SJ(SJ(SJ(
busA and busB busA
- One 32-bit input bus: busW busW 33t | 32
32 Registers | pysB
* Register is selected by: Clk 32

- RA (number) selects the register to put on busA (data)
- RB (humber) selects the register to put on busB (data)

- RW (number) selects the register to be written
via busW (data) when Write Enable is 1

e Clock input (clk)
- The clk input is a factor ONLY during write operation

- During read operation, behaves as a combinational logic
block:
RA or RB valid = busA or busB valid after “access time.”

@ CS61CL L09 Single Cycle CPU Design (39) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

e 1. Analyze instruction set architecture (ISA)
=> datapath requirements
- meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer

e 2. Select set of datapath components and establish
clocking methodology

» 3. Assemble datapath meeting requirements

* 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

* 5. Assemble the control logic (hard part!)

w CS61CL L09 Single Cycle CPU Design (40) Huddleston, Summer 2009 © UCB

Overview of the Instruction Fetch Unit

e The common RTL operations
* Fetch the Instruction: mem[PC]

- Update the program counter:

- Sequential Code: PC <~ PC + 4
- Branch and Jump: PC < “something else”

R Next Address
Logic

Address Instruction Word

. /
Instruction 7

@ Memory 32
CS61CL L09 Single Cycle CPU Design (41) Huddleston, Summer 2009 © UCB

Add & Subtract

* R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt
- Ra, Rb, and Rw come from instruction’s Rs, Rt, and Rd fields

- ALUctr and RegWr: control logic after decoding the instruction

1 26 2 16 1 0
op rs rt rd shamt funct

6bits Sbits Sbits S5bits 5 bits 6 bits
* ... Already defined the register file & ALU

RegWr SJIFd SJIFS SJIFt ALUctr
| busA
busW, Rw Ra Rb 737 |
o/ | 32 32-bit J/E e
—— Registers busB 3
clk / 32 L

@ CS61CL L09 Single Cycle CPU Design (42) Huddleston, Summer 2009 © UCB

Logical Operations with Immediate
* R[rt] = R[rs] op ZeroExt[imm16]

0
op rs rt immediate
31 6 bits 5 bits 5 bits 16 15 16 bits 0
0000000000000000 immediate
16 bits 16 bits

But we’re writing to Rt register??
RegWr Rd Rs Rt ALUctr

L o ¥

busw | RW Ra Rb| busA 32 -
B RegFile busB
/\ 7
clk | 52

ﬂ CS61CL L09 Single Cycle CPU Design (43) Huddleston, Summer 2009 © UCB

Logical Operations with Immediate

* R[rt] = R[rs] op ZeroExt[imm16]

0
op s rt immediate
31 6 bits 5 bits 5 bits 16 15 16 bits 0
R 0000000000000000 immediate
egDst : _
Rd Rt 16 bits] 16 bits
What about Rt register read??
1 O
RegWr Rs Rt ALUctr
| X F ¥
Rw Ra Rb| busA 32
) 7) 32
5o | RegFile > =
JAN
clk |

N

) e
mmml6—-— 2

16 |

- ALUSrc
w * Already defined 32-bit MUX; Zero Ext?
CS61CL L09 Single Cycle CPU Design (44) Huddleston, Summer 2009 © UCB

Load Operations
. R[rtL: Mem[R][rs] + SignExt[imm16]]
)1(am2ple: :2Lw rlt,rs ,imml6
op T rs rt | immediate
6 bits S bits 5 bits 16 bits

RegDst R4 Rt

1 O
RegWr Rs Rt ALUctr

| X F ¥

Rw Ra Rb| busA 32 "
3 RegFile >E
JAN
clk!
N
. e
imm16— s
16 | &
= ALUSrc

@ CS61CL L09 Single Cycle CPU Design (45) Huddleston, Summer 2009 © UCB

Load Operations

. R[rtL: Mem|[R[rs] + SignExt[imm16]]
)1(am2ple: :2Lw rlt,rs ,imml6

op Is rt immediate
6 bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
T 0 MemWr
RegWr Rs Rt
| X F ¥
busw | Rw Ra Rb| busA 32 \ﬁ
——— . ' > | 32
3» | RegFile | pusB >g # J?)\
A A /
| | i
clk g ?7_.32) WiEn Adr
imml6—— & —*—y1J Data In 1
6 5] ® Memory| ©
ExtOp _J ALUSrc ¢k —>

@ CS61CL L09 Single Cycle CPU Design (46)

Huddleston, Summer 2009 © UCB

Store Operations
e Mem|[R|[rs] + SignExt[in%m16]] = R[rt]

EX.: sw rt, rs, imml

1 26 2 16
op Is rt immediate
6 bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
1 0 MemWr

RegWr Rs Rt

| X F ¥

Rw Ra Rb| busA 32 \ﬁ
busW A 0
RegFile SE | AN

32 bysB =B B 0
JAN 7 0
32
Clk | 4 \ 4]
g ﬁlWrEn Adr
imml6—— & —»—1/ DataIn 1
2 Data [—1
16 |[&] 32
~ >Memory

clk —
@ ExtOp _ 1 ALUSrc
CS61CL L09 Single Cycle CPU Design (47) Huddleston, Summer 2009 © UCB

Store Operations

 Mem[R[rs] + SignExt[in%m16]] = R[rt]

EX.: sw rt, rs, imml

74

1 26 2 16
op Is rt immediate
6 bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
T 0 MemWr
RegWr Rs Rt
| X F ¥
busw | Rw Ra Rb| busA 32 \ﬁ
—7 . / > 3/2
2 | Reghile | bysp D 9 7 '[?)\
o 32 °
| | i
clk ? . 321W;En Adr
imm16——| & [——1 Data In 1
16 § 19 MData 1
= [k —Memory
ExtOp _J ALUSrc ¢

CS61CL L09 Single Cycle CPU Design (48)

Huddleston, Summer 2009 © UCB

The Branch Instruction

31 2 21 | 0
op IS rt immediate
6 bits 5bits 5 bits 16 bits
beq rs, rt, immlé6

- mem[PC] Fetch the instruction from memory

- Equal = R[rs] == R[rt] Calculate branch condition

- if (Equal) Calculate the next instruction’s address

- PC =
else
- PC =

PC + 4 + (SighExt(imm16) x 4)

PC +4

@ CS61CL L09 Single Cycle CPU Design (49)

Huddleston, Summer 2009 © UCB

Datapath for Branch Operations

ebeq rs,rt,immi16
Datapath generates condition (equal)

1 26 2 16
op Is rt immediate
6 bits 5 bits 5 bits 16 bits
Inst Address
Equal
4 nPC_sel 1
> _J\L R
= RegWr Rs Rt ALUctr
J% B R
>] 32
2| |- busw | RY Ra Rb[DusA 5= |2 -
c _IQ — — o > y
> s RegFile busB =
e A 7
2| (e
SHC clk clk
4
Already have mux, adder, need special sign
6

extender for PC, need equal compare (sub?)

CS61CL L09 Single Cycle CPU Design (50)

Huddleston, Summer 2009 © UCB

Putting it All Together:A Single Cycle Datapath

ﬂ CS61CL L09 Single Cycle CPU Design (51)

ExtOp ALUSrc

Huddleston, Summer 2009 © UCB

Inst ~E IR » Instruction<31:0>
Memory = o [=
Aldr ‘7§] VV§ VVg]
Rs Rt Rd Immlé6
nPC sel |RegDst
Rd Rt Equal ALUctr MemtoReg
. 0o MemWr
RegWr Rs Rt
P L ot &
2 | IN S [busw| RY Ra Rb busA 32 b
;H/ — | W . ’ > 32 J\\
=L |32 Regkile | pysB S 0
El1° A F 0 /
3 A clk 32 ‘\ i R
g >(:D" | g /32 I WrEn Adr
> clk imml6—-—{ g ——1./ Dataln 1
% 6 (2] % Data (7] -
& Memory
- clk —4>
+

An Abstract View of the Implementation

SEE EEE EEE E— EE EEE EEE EEE EEE EEE EE EEn S EE EE EE B EE Ea S EE S B mE B B Ea Ea S Ea Eae e ey

A\
|
Control |
Ideal I
Instruction Control Signals Conditions ;
Memory —’————J—J—HL———T ————————————— -
_Instruction | G G (O % O B L
d Address)
[(2 LY
| |2 32 >
L2 i Register /
: < File B
I b~ /\ ,
I \% 7
: clk clk 32
|
|

' Datapath .

-

O - O O O O B S B B S S B S S S S S S S Eae Eas mee Ees . —-— e - o

@ CS61CL L09 Single Cycle CPU Design (52) Huddleston, Summer 2009 © UCB

Summary: A Single Cycle Datapath

* We hav_e Instruction<31:0>
everything nPC sel — instr |
except control N fetch = e =
signals X7 unit VAN ISH

RegDst 7 W

1 0 ALUctr MemtoReg
Rs Rt
&gﬂlf 5 S/F st Zero MemWr
busw| RY Ra Rb busA 32 =

@ CS61CL L09 Single Cycle CPU Design (53)

7 . >
32 | RegFile | pysp) = 0
o 2 ’ /
| | i
clk g /32 ,[W‘r'En Adr
imml6—— g ——1./ Dataln 1
16 |2 32 Data 17 -
& Memory
~ clk 4>
+

ExtOp ALUSrc

Huddleston, Summer 2009 © UCB

“And In conclusion...”

* N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

« XOR serves as conditional inverter

 CPU design involves Datapath,Control

- Datapath in MIPS involves 5 CPU stages
1. Instruction Fetch

Instruction Decode & Register Read

ALU (Execute)

Memory

O AW N

Register Write

u
ﬂ CS61CL L09 Single Cycle CPU Design (54) Huddleston, Summer 2009 © UCB

Bonus slides

* These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement

* The slides will appear in the order they
would have in the normal presentation

\
),

. B0l

CS61CL L09 Single Cycle CPU Design (55) Huddleston, Summer 2009 © UCB

Review of Timing Terms

e Clock (CLK) - steady square wave that
synchronizes system

e Setup Time - when the input must be stable before
the rising edge of the CLK

* Hold Time - when the input must be stable after the
rising edge of the CLK

« “CLK-to-Q” Delay - how long it takes the output to
change, measured from the rising edge

 Flip-flop - one bit of state that samples every rising
edge of the CLK

* Register - several bits of state that samples on
rising edge of CLK or on LOAD

@ CS61CL L09 Single Cycle CPU Design (56) Huddleston, Summer 2009 © UCB

What about overflow?

e Consider a 2-bit signhed # & overflow:
*10 = -2 + -2 or -1

11 = -1 + -2 only > & 01 Qo

00 = 0 NOTHING! L

01 = 1+ 1only] x| # Co
* Highest adder i !

-C,=Carry-in=C, ,C, = Carr‘y-out = Cout
*No C_; or C,, = NO overflow!

What * C;, and C_,, = NO overflow!

CS61CL L09 Single Cycle CPU Design (57) Huddleston, Summer 2009 © UCB

What about overflow?

e Consider a 2-bit signed # & overflow:

a, Oy Qo
10 = -2 l 1
11 = -1
00 = O NElE # Co
01 = 1 i l
S, So

e Qverflows when...

overflow = ¢,, XOR ¢,,_1

@ CS61CL L09 Single Cycle CPU Design (58) Huddleston, Summer 2009 © UCB

Extremely Clever Subtractor

v &v\—\ 6\“-\

SUR

O\)Q\"P ‘ou)

ﬂ CS61CL L09 Single Cycle CPU Design (59) Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (2/3)

eslti Sr3,5rl1l,17
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an s1ti, then
read register $ril

- Stage 3: compare value retrieved in Stage 2
with the integer 17

- Stage 4: idle

- Stage 5: write the result of Stage 3 in
register $r3

@ CS61CL L09 Single Cycle CPU Design (60) Huddleston, Summer 2009 © UCB

Example: s1ti Instruction

registers

instruction
memory

%

sltir3, r1,17

@ CS61CL L09 Single Cycle CPU Design (61) Huddleston, Summer 2009 © UCB

Clocking Methodology

Clk |

|

P

E

Jr._'\
=,
.'I@:

>

—J—>

4.1%_.'

» Storage elements clocked by same edge
e Being physical devices, flip-flops (FF) and
combinational logic have some delays
- Gates: delay from input change to output change

- Signals at FF D input must be stable before active clock

edge to allow signal to travel within the FF (set-up time),
and we have the usual clock-to-Q delay

 “Critical path” (longest path through logic)

Q(determines length of clock period

CS61CL L09 Single Cycle CPU Design (62)

Huddleston, Summer 2009 © UCB

An Abstract View of the Critical Path
Critical Path (Load Instruction) =
Delay clock through PC (FFs) +
Instruction Memory’s Access Time +
Register File’s Access Time, +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Stable Time for Register File Write

Instruction

Ideal
Instruction

(Assumes a fast controller)

Instruction
Address

1

ext Addres

s)

Register
File

W

R

CS61CL L09 Single Cycle CPU Design (63) Huddleston, Summer 2009 © UCB

