
CS61CL L09 Single Cycle CPU Design (1)! Huddleston, Summer 2009 © UCB !

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c  
CS61CL : Machine Structures 
Lecture #9 – Single Cycle CPU Design 

2009-07-22!

CS61CL L09 Single Cycle CPU Design (2)! Huddleston, Summer 2009 © UCB !

Finite State Machine Example: 3 ones…!

Draw the FSM…!

FSM to detect the occurrence of 3 consecutive 1ʼs in the input."

Assume state transitions are controlled by the clock:"
on each clock cycle the machine checks the inputs and moves

to a new state and produces a new output…"
CS61CL L09 Single Cycle CPU Design (3)! Huddleston, Summer 2009 © UCB !

Hardware Implementation of FSM!

+!

=! ?!

… Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state."

Combinational logic circuit is
used to implement a function
maps from present state and
input to next state and output.!

CS61CL L09 Single Cycle CPU Design (4)! Huddleston, Summer 2009 © UCB !

Register Details…Whatʼs inside?!

• n instances of a “Flip-Flop”!
• Flip-flop name because the output flips and

flops between and 0,1 !
• D is “data”, Q is “output”!

• Also called “d-type Flip-Flop”!
CS61CL L09 Single Cycle CPU Design (5)! Huddleston, Summer 2009 © UCB !

Adder/Subtracter – One-bit adder LSB…!

CS61CL L09 Single Cycle CPU Design (6)! Huddleston, Summer 2009 © UCB !

Adder/Subtracter – One-bit adder (1/2)…!

CS61CL L09 Single Cycle CPU Design (7)! Huddleston, Summer 2009 © UCB !

Adder/Subtracter – One-bit adder (2/2)…!

CS61CL L09 Single Cycle CPU Design (8)! Huddleston, Summer 2009 © UCB !

N 1-bit adders ! 1 N-bit adder!

+! +! +!
b0"

CS61CL L09 Single Cycle CPU Design (9)! Huddleston, Summer 2009 © UCB !

Administrivia!

• Midterm handed back today!

0

2

4

6

8

10

12

14

16

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100 <110 <120 <130 <140 <150

fr
eq

ue
nc

y

CS61CL L09 Single Cycle CPU Design (10)! Huddleston, Summer 2009 © UCB !

Five Components of a Computer!

 Processor

Computer

Control

Datapath

Memory
(passive)

(where
programs,
data live

when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where

programs,
data live
when not
running)

CS61CL L09 Single Cycle CPU Design (11)! Huddleston, Summer 2009 © UCB !

The CPU!

• Processor (CPU): the active part of the
computer, which does all the work
(data manipulation and decision-
making)!

• Datapath: portion of the processor
which contains hardware necessary to
perform operations required by the
processor (the brawn)!

• Control: portion of the processor (also
in hardware) which tells the datapath
what needs to be done (the brain)!

CS61CL L09 Single Cycle CPU Design (12)! Huddleston, Summer 2009 © UCB !

Stages of the Datapath : Overview!

• Problem: a single, atomic block which
“executes an instruction” (performs all
necessary operations beginning with
fetching the instruction) would be too
bulky and inefficient!

• Solution: break up the process of
“executing an instruction” into stages,
and then connect the stages to create
the whole datapath!

• smaller stages are easier to design!
• easy to optimize (change) one stage
without touching the others!

CS61CL L09 Single Cycle CPU Design (13)! Huddleston, Summer 2009 © UCB !

Stages of the Datapath (1/5)!

• There is a wide variety of MIPS
instructions: so what general steps do
they have in common?!

• Stage 1: Instruction Fetch!
• no matter what the instruction, the 32-bit
instruction must first be fetched from
memory (the cache-memory hierarchy)!

• also, this is where we Increment PC  
(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)!

CS61CL L09 Single Cycle CPU Design (14)! Huddleston, Summer 2009 © UCB !

Stages of the Datapath (2/5)!

• Stage 2: Instruction Decode!
• upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)!

• first, read the opcode to determine
instruction type and field lengths!

• second, read in data from all necessary
registers!

-  for add, read two registers!
-  for addi, read one register!
-  for jal, no reads necessary!

CS61CL L09 Single Cycle CPU Design (15)! Huddleston, Summer 2009 © UCB !

• Stage 3: ALU (Arithmetic-Logic Unit)!
• the real work of most instructions is done
here: arithmetic (+, -, *, /), shifting, logic (&,
|), comparisons (slt)!

• what about loads and stores?!
-  lw $t0, 40($t1)!
-  the address we are accessing in memory = the

value in $t1 PLUS the value 40!
-  so we do this addition in this stage!

Stages of the Datapath (3/5)!

CS61CL L09 Single Cycle CPU Design (16)! Huddleston, Summer 2009 © UCB !

Stages of the Datapath (4/5)!

• Stage 4: Memory Access!
• actually only the load and store
instructions do anything during this
stage; the others remain idle during this
stage or skip it all together!

• since these instructions have a unique
step, we need this extra stage to account
for them!

• as a result of the cache system, this
stage is expected to be fast!

CS61CL L09 Single Cycle CPU Design (17)! Huddleston, Summer 2009 © UCB !

Stages of the Datapath (5/5)!

• Stage 5: Register Write!
• most instructions write the result of
some computation into a register!

• examples: arithmetic, logical, shifts,
loads, slt!

• what about stores, branches, jumps?!
-  donʼt write anything into a register at the

end!
-  these remain idle during this fifth stage or

skip it all together!

CS61CL L09 Single Cycle CPU Design (18)! Huddleston, Summer 2009 © UCB !

Generic Steps of Datapath!

in
st

ru
ct

io
n"

m
em

or
y"

+4"

rt"
rs"
rd"

re
gi

st
er

s"

ALU!

D
at

a"
m

em
or

y"

imm"

1. Instruction"
Fetch"

2. Decode/"
 Register"

Read"

3. Execute" 4. Memory"5. Reg."
 Write"

PC
"

CS61CL L09 Single Cycle CPU Design (19)! Huddleston, Summer 2009 © UCB !

• add $r3,$r1,$r2 # r3 = r1+r2!
• Stage 1: fetch this instruction, inc. PC!
• Stage 2: decode to find itʼs an add, then
read registers $r1 and $r2!

• Stage 3: add the two values retrieved in
Stage 2!

• Stage 4: idle (nothing to write to memory)!
• Stage 5: write result of Stage 3 into register
$r3!

Datapath Walkthroughs (1/3)!

CS61CL L09 Single Cycle CPU Design (20)! Huddleston, Summer 2009 © UCB !

in
st

ru
ct

io
n"

m
em

or
y"

+4"

re
gi

st
er

s"

ALU!

D
at

a"
m

em
or

y"

imm"

2"
1"
3"

ad
d

r3
, r

1,
 r2
"

reg[1]+reg[2]"

reg[2]"

reg[1]"

Example: add Instruction!

PC
"

CS61CL L09 Single Cycle CPU Design (21)! Huddleston, Summer 2009 © UCB !

• sw $r3, 17($r1)!
• Stage 1: fetch this instruction, inc. PC!
• Stage 2: decode to find itʼs a sw, then
read registers $r1 and $r3

• Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)!

• Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3!

• Stage 5: idle (nothing to write into a
register)!

Datapath Walkthroughs (3/3)!

CS61CL L09 Single Cycle CPU Design (22)! Huddleston, Summer 2009 © UCB !

in
st

ru
ct

io
n"

m
em

or
y"

+4"

re
gi

st
er

s"

ALU!

D
at

a"
m

em
or

y"

imm"

3"
1"
x"

SW
 r3

, 1
7(

r1
)"

reg[1]+17"

17"

reg[1]"

M
EM

[r1
+1

7]
<=

r3
"

reg[3]"

Example: sw Instruction!

PC
"

CS61CL L09 Single Cycle CPU Design (23)! Huddleston, Summer 2009 © UCB !

Why Five Stages? (1/2)!

• Could we have a different number of
stages?!

• Yes, and other architectures do!

• So why does MIPS have five if
instructions tend to idle for at least
one stage?!

• The five stages are the union of all the
operations needed by all the instructions.!

• There is one type of instruction that uses
all five stages: the load!

CS61CL L09 Single Cycle CPU Design (24)! Huddleston, Summer 2009 © UCB !

• lw $r3, 17($r1)!
• Stage 1: fetch this instruction, inc. PC!
• Stage 2: decode to find itʼs a lw, then
read register $r1!

• Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)!

• Stage 4: read value from memory
address compute in Stage 3!

• Stage 5: write value found in Stage 4 into
register $r3!

Why Five Stages? (2/2)!

CS61CL L09 Single Cycle CPU Design (25)! Huddleston, Summer 2009 © UCB !

ALU!

in
st

ru
ct

io
n"

m
em

or
y"

+4"

re
gi

st
er

s"

D
at

a"
m

em
or

y"

imm"

3"
1"
x"

LW
 r3

, 1
7(

r1
)"

reg[1]+17"

17"

reg[1]"

M
EM

[r1
+1

7]
"

Example: lw Instruction!

PC
"

CS61CL L09 Single Cycle CPU Design (26)! Huddleston, Summer 2009 © UCB !

Datapath Summary!

• The datapath based on data transfers
required to perform instructions!

• A controller causes the right transfers
to happen !

PC
"

in
st

ru
ct

io
n"

m
em

or
y"

+4"

rt"
rs"
rd"

re
gi

st
er

s"

D
at

a"
m

em
or

y"

imm"

ALU!

Controller"
opcode, funct"

CS61CL L09 Single Cycle CPU Design (27)! Huddleston, Summer 2009 © UCB !

CPU clocking (1/2)!

• Single Cycle CPU: All stages of an
instruction are completed within one
long clock cycle. !

• The clock cycle is made sufficient long to
allow each instruction to complete all
stages without interruption and within
one cycle.!

1. Instruction"
Fetch"

2. Decode/"
 Register"

Read"

3. Execute" 4. Memory"5. Reg."
 Write"

For each instruction, how do we control the
flow of information though the datapath?

CS61CL L09 Single Cycle CPU Design (28)! Huddleston, Summer 2009 © UCB !

CPU clocking (2/2)!

• Multiple-cycle CPU: Only one stage of
instruction per clock cycle. !

• The clock is made as long as the slowest
stage.!

• Several significant advantages over
single cycle execution: Unused stages in
a particular instruction can be skipped
OR instructions can be pipelined
(overlapped).!

1. Instruction"
Fetch"

2. Decode/"
 Register"

Read"

3. Execute" 4. Memory" 5. Reg."
 Write"

For each instruction, how do we control the
flow of information though the datapath?

CS61CL L09 Single Cycle CPU Design (29)! Huddleston, Summer 2009 © UCB !

• 1. Analyze instruction set architecture (ISA)  
! datapath requirements!

• meaning of each instruction is given by the register transfers!
• datapath must include storage element for ISA registers!
• datapath must support each register transfer!

• 2. Select set of datapath components and establish
clocking methodology!

• 3. Assemble datapath meeting requirements!
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.!

• 5. Assemble the control logic (hard part!)!

How to Design a Processor: step-by-step!

CS61CL L09 Single Cycle CPU Design (30)! Huddleston, Summer 2009 © UCB !

• All MIPS instructions are 32 bits long. 3 formats: 

• R-type  

•  I-type  

• J-type  

• The different fields are:!
• op: operation (“opcode”) of the instruction!
•  rs, rt, rd: the source and destination register specifiers!
• shamt: shift amount!
•  funct: selects the variant of the operation in the “op” field!
• address / immediate: address offset or immediate value!
•  target address: target address of jump instruction !

op! target address!
0!26!31!

6 bits! 26 bits!

op! rs! rt! rd! shamt! funct!
0!6!11!16!21!26!31!

6 bits! 6 bits!5 bits!5 bits!5 bits!5 bits!

op! rs! rt! address/immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

Review: The MIPS Instruction Formats!

CS61CL L09 Single Cycle CPU Design (31)! Huddleston, Summer 2009 © UCB !

• ADDU and SUBU!
• addu rd,rs,rt
• subu rd,rs,rt!

• OR Immediate:!
• ori rt,rs,imm16!

• LOAD and  
STORE Word!
• lw rt,rs,imm16
• sw rt,rs,imm16!

• BRANCH:!
• beq rs,rt,imm16!

op! rs! rt! rd! shamt! funct!
0!6!11!16!21!26!31!

6 bits! 6 bits!5 bits!5 bits!5 bits!5 bits!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

The MIPS-lite Subset for today!

CS61CL L09 Single Cycle CPU Design (32)! Huddleston, Summer 2009 © UCB !

ALU Needs for MIPS-lite + Rest of MIPS!

• Addition, subtraction, logical OR, ==:!
ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] – R[rt]; ...

ORI R[rt] = R[rs] | zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])... !

• Test to see if output == 0 for any ALU
operation gives == test. How?!

• P&H also adds AND,  
Set Less Than (1 if A < B, 0 otherwise) !

• ALU follows chap 5!
CS61CL L09 Single Cycle CPU Design (33)! Huddleston, Summer 2009 © UCB !

• 1. Analyze instruction set architecture (ISA)  
! datapath requirements!

• meaning of each instruction is given by the register transfers!
• datapath must include storage element for ISA registers!
• datapath must support each register transfer!

• 2. Select set of datapath components and establish
clocking methodology!

• 3. Assemble datapath meeting requirements!
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.!

• 5. Assemble the control logic (hard part!)!

How to Design a Processor: step-by-step!

CS61CL L09 Single Cycle CPU Design (34)! Huddleston, Summer 2009 © UCB !

What Hardware Is Needed? (1/2)!

• PC: a register which keeps track of
memory addr of the next instruction!

• General Purpose Registers!
• used in Stages 2 (Read) and 5 (Write)!
• MIPS has 32 of these!

• Memory!
• used in Stages 1 (Fetch) and 4 (R/W)!
• cache system makes these two stages as
fast as the others, on average!

CS61CL L09 Single Cycle CPU Design (35)! Huddleston, Summer 2009 © UCB !

What Hardware Is Needed? (2/2)!

• ALU!
• used in Stage 3!
• something that performs all necessary

functions: arithmetic, logicals, etc.!
• weʼll design details later!

• Miscellaneous Registers!
• In implementations with only one stage per

clock cycle, registers are inserted between
stages to hold intermediate data and control
signals as they travels from stage to stage.!

• Note: Register is a general purpose term
meaning something that stores bits. Not all
registers are in the “register file”.!

CS61CL L09 Single Cycle CPU Design (36)! Huddleston, Summer 2009 © UCB !

Combinational Logic Elements (Building Blocks)!

• Adder!

• MUX!

• ALU!

32!

32!

A!

B!
32! Sum!

CarryOut!

32!

32!

A!

B!
32! Result!

OP!

32!A!

B! 32!

Y!32!

Select!

A
dder!

M
U

X
!

A
LU
!

CarryIn!

CS61CL L09 Single Cycle CPU Design (37)! Huddleston, Summer 2009 © UCB !

Storage Element: Idealized Memory!
• Memory (idealized)!

• One input bus: Data In!
• One output bus: Data Out!

• Memory word is found by:!
• Address selects the word to put on Data Out!
• Write Enable = 1: address selects the memory  

word to be written via the Data In bus!

• Clock input (CLK) !
• The CLK input is a factor ONLY during write

operation!
• During read operation, behaves as a combinational

logic block:!
-  Address valid ! Data Out valid after “access time.”!

Clk!

Data In!

Write Enable!

32! 32!
DataOut!

Address!

CS61CL L09 Single Cycle CPU Design (38)! Huddleston, Summer 2009 © UCB !

Storage Element: Register (Building Block)!

• Similar to D Flip Flop except!
• N-bit input and output!
• Write Enable input!

• Write Enable:!
• negated (or deasserted) (0):  
Data Out will not change!

• asserted (1):  
Data Out will become Data In on positive
edge of clock!

clk!

Data In!

Write Enable!

N! N!

Data Out!

CS61CL L09 Single Cycle CPU Design (39)! Huddleston, Summer 2009 © UCB !

Storage Element: Register File!

• Register File consists of 32 registers:!
• Two 32-bit output busses:!
 busA and busB!
• One 32-bit input bus: busW  

• Register is selected by:!
• RA (number) selects the register to put on busA (data)!
• RB (number) selects the register to put on busB (data)!
• RW (number) selects the register to be written 

via busW (data) when Write Enable is 1!
• Clock input (clk) !

• The clk input is a factor ONLY during write operation!
• During read operation, behaves as a combinational logic

block:!
-  RA or RB valid ! busA or busB valid after “access time.”!

Clk!

busW!

Write Enable!

32!
32!

busA!

32!
busB!

5! 5! 5!
RW!RA!RB!

32 32-bit!
Registers!

CS61CL L09 Single Cycle CPU Design (40)! Huddleston, Summer 2009 © UCB !

• 1. Analyze instruction set architecture (ISA)  
! datapath requirements!

• meaning of each instruction is given by the register transfers!
• datapath must include storage element for ISA registers!
• datapath must support each register transfer!

• 2. Select set of datapath components and establish
clocking methodology!

• 3. Assemble datapath meeting requirements!
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.!

• 5. Assemble the control logic (hard part!)!

How to Design a Processor: step-by-step!

CS61CL L09 Single Cycle CPU Design (41)! Huddleston, Summer 2009 © UCB !

Overview of the Instruction Fetch Unit!

• The common RTL operations!
• Fetch the Instruction: mem[PC]!
• Update the program counter:!

-  Sequential Code: PC " PC + 4 !
-  Branch and Jump: PC " “something else”!

32!

Instruction Word!Address!
Instruction!

Memory!

PC!clk!

Next Address!
Logic!

CS61CL L09 Single Cycle CPU Design (42)! Huddleston, Summer 2009 © UCB !

Add & Subtract!
• R[rd] = R[rs] op R[rt] ! Ex.: addU rd,rs,rt!

• Ra, Rb, and Rw come from instructionʼs Rs, Rt, and Rd fields 

• ALUctr and RegWr: control logic after decoding the instruction!

• … Already defined the register file & ALU !

32!
Result!

ALUctr!

clk!

busW!

RegWr!

32!
32!

busA!

32!
busB!

5! 5! 5!

Rw!Ra!Rb!
32 32-bit!
Registers!

Rs! Rt!Rd!

A
LU!

0!
op! rs! rt! rd! shamt! funct!

6!11!16!21!26!31!

6 bits! 6 bits!5 bits!5 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (43)! Huddleston, Summer 2009 © UCB !

Logical Operations with Immediate!
• R[rt] = R[rs] op ZeroExt[imm16] !

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

immediate!
0!16! 15!31!

16 bits!16 bits!
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0!

32!

ALUctr!

clk!

busW!

RegWr!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs! Rt!

A
LU
!

5!
Rd!

But weʼre writing to Rt register??!

CS61CL L09 Single Cycle CPU Design (44)! Huddleston, Summer 2009 © UCB !

Logical Operations with Immediate!
• R[rt] = R[rs] op ZeroExt[imm16] !

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

immediate!
0!16! 15!31!

16 bits!16 bits!
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0!

• Already defined 32-bit MUX; Zero Ext?!

What about Rt register read??!

32!

ALUctr!

clk!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!

ZeroExt! 32!16!
imm16!

ALUSrc!

0!1!

0!

1!

A
LU
!

5!

RegDst!

CS61CL L09 Single Cycle CPU Design (45)! Huddleston, Summer 2009 © UCB !

Load Operations!
• R[rt] = Mem[R[rs] + SignExt[imm16]]
! Example: lw rt,rs,imm16!

32!

ALUctr!

clk!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!

ZeroExt! 32!16!
imm16!

ALUSrc!

0!1!

0!

1!

A
LU
!

5!

RegDst!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (46)! Huddleston, Summer 2009 © UCB !

Load Operations!
• R[rt] = Mem[R[rs] + SignExt[imm16]]
! Example: lw rt,rs,imm16!

32!

ALUctr!

clk!

busW!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!RegDst!

Extender! 32!16!
imm16!

ALUSrc!ExtOp!

MemtoReg!

clk!

Data In!
32!

MemWr!0!1!

0!

1!

A
LU
! 0!

1!
WrEn! Adr!

Data!
Memory!

5!

?"

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (47)! Huddleston, Summer 2009 © UCB !

Store Operations!
• Mem[R[rs] + SignExt[imm16]] = R[rt]!  

Ex.: sw rt, rs, imm16!

32!

ALUctr!

clk!

busW!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!RegDst!

Extender! 32!16!
imm16!

ALUSrc!ExtOp!

MemtoReg!

clk!

Data In!
32!

MemWr!0!1!

0!

1!

A
LU
! 0!

1!
WrEn! Adr!

Data!
Memory!

5!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (48)! Huddleston, Summer 2009 © UCB !

Store Operations!
• Mem[R[rs] + SignExt[imm16]] = R[rt]!  

Ex.: sw rt, rs, imm16!
op! rs! rt! immediate!

0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

32!

ALUctr!

clk!

busW!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!RegDst!

Extender! 32!16!
imm16!

ALUSrc!ExtOp!

MemtoReg!

clk!

Data In!
32!

MemWr!0!1!

0!

1!

A
LU
! 0!

1!
WrEn! Adr!

Data!
Memory!

5!

CS61CL L09 Single Cycle CPU Design (49)! Huddleston, Summer 2009 © UCB !

The Branch Instruction!

 beq rs, rt, imm16
• mem[PC] Fetch the instruction from memory!
• Equal = R[rs] == R[rt] Calculate branch condition!
• if (Equal) Calculate the next instructionʼs address!

-  PC = PC + 4 + (SignExt(imm16) x 4)!
! else!

-  PC = PC + 4!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (50)! Huddleston, Summer 2009 © UCB !

Datapath for Branch Operations!
• beq rs, rt, imm16! !  
Datapath generates condition (equal)!

Already have mux, adder, need special sign
extender for PC, need equal compare (sub?)!imm16!

clk!

PC
!

00
!

4! nPC_sel!

PC
 Ext!

A
dder!

A
dder!

M
ux!

Inst Address"

32!

ALUctr!

clk!

busW!

RegWr!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs! Rt!

A
LU
!

5!

="

Equal!

op! rs! rt! immediate!
0!16!21!26!31!

6 bits! 16 bits!5 bits!5 bits!

CS61CL L09 Single Cycle CPU Design (51)! Huddleston, Summer 2009 © UCB !

Putting it All Together:A Single Cycle Datapath!

imm16!

32!

ALUctr!

clk!

busW!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!
RegDst!

Extender!

32!16!
imm16!

ALUSrc!ExtOp!

MemtoReg!

clk!

Data In!
32!

MemWr!
Equal!

Instruction<31:0>!<21:25>!

<16:20>!

<11:15>!

<0:15>!

Imm16!Rd!Rt!Rs!

clk!

PC
!

00
!

4!

nPC_sel!

PC
 Ext!

Adr!

Inst!
Memory!

A
dder!

A
dder!

M
ux!

0!1!

0!

1!

=!A
LU
! 0!

1!
WrEn! Adr!

Data!
Memory!

5!

CS61CL L09 Single Cycle CPU Design (52)! Huddleston, Summer 2009 © UCB !

An Abstract View of the Implementation!

Data!
Out!

clk!

5!

Rw!Ra! Rb!

Register!
File!

Rd!

Data
In!

Data!
Addr! Ideal!

Data!
Memory!

Instruction!

Instruction!
Address!

Ideal!
Instruction!

Memory!

PC
!

5!
Rs!

5!
Rt!

32!

32!32!32!
A!

B!

N
ex

t A
dd

re
ss
!

Control!

Datapath!

Control Signals!Conditions!

clk! clk!

A
LU
!

CS61CL L09 Single Cycle CPU Design (53)! Huddleston, Summer 2009 © UCB !

Summary: A Single Cycle Datapath!

32!

ALUctr!

clk!

busW!

RegWr!

32!

32!busA!

32!

busB!

5! 5!

Rw! Ra! Rb!

RegFile!

Rs!

Rt!

Rt!

Rd!
RegDst!

Extender!

32!16!
imm16!

ALUSrc!ExtOp!

MemtoReg!

clk!

Data In!
32!

MemWr!zero!

0!1!

0!

1!

=!A
LU
! 0!

1!
WrEn! Adr!

Data!
Memory!

5!

Instruction<31:0>!<21:25>!

<16:20>!

<11:15>!

<0:15>!

Imm16!Rd!Rt!Rs!

nPC_sel! instr!
fetch!
unit!clk!

• We have
everything
except control
signals!

CS61CL L09 Single Cycle CPU Design (54)! Huddleston, Summer 2009 © UCB !

“And In conclusion…”!

• N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input!

• XOR serves as conditional inverter!

• CPU design involves Datapath,Control!
• Datapath in MIPS involves 5 CPU stages!

1.  Instruction Fetch!
2.  Instruction Decode & Register Read!
3.  ALU (Execute)!
4.  Memory!
5.  Register Write!

CS61CL L09 Single Cycle CPU Design (55)! Huddleston, Summer 2009 © UCB !

Bonus slides!

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!

• The slides will appear in the order they
would have in the normal presentation!

CS61CL L09 Single Cycle CPU Design (56)! Huddleston, Summer 2009 © UCB !

Review of Timing Terms!
• Clock (CLK) - steady square wave that

synchronizes system!
• Setup Time - when the input must be stable before

the rising edge of the CLK!
• Hold Time - when the input must be stable after the

rising edge of the CLK!
• “CLK-to-Q” Delay - how long it takes the output to

change, measured from the rising edge!
• Flip-flop - one bit of state that samples every rising

edge of the CLK!
• Register - several bits of state that samples on

rising edge of CLK or on LOAD!

CS61CL L09 Single Cycle CPU Design (57)! Huddleston, Summer 2009 © UCB !

What about overflow?!
• Consider a 2-bit signed # & overflow:!
• 10 = -2 + -2 or -1
• 11 = -1 + -2 only
• 00 = 0 NOTHING!
• 01 = 1 + 1 only

• Highest adder!
• C1 = Carry-in = Cin, C2 = Carry-out = Cout!
• No Cout or Cin ! NO overflow! !
• Cin and Cout ! NO overflow!!
• Cin but no Cout ! A,B both > 0, overflow!!
• Cout but no Cin ! A,B both < 0, overflow!!

±! #!

What  
op?!

CS61CL L09 Single Cycle CPU Design (58)! Huddleston, Summer 2009 © UCB !

What about overflow?!

• Consider a 2-bit signed # & overflow:!
! 10 = -2 + -2 or -1
11 = -1 + -2 only
00 = 0 NOTHING!
01 = 1 + 1 only

• Overflows when…!
• Cin, but no Cout ! A,B both > 0, overflow!!
• Cout, but no Cin ! A,B both < 0, overflow!!

±! #!

CS61CL L09 Single Cycle CPU Design (59)! Huddleston, Summer 2009 © UCB !

Extremely Clever Subtractor !

CS61CL L09 Single Cycle CPU Design (60)! Huddleston, Summer 2009 © UCB !

• slti $r3,$r1,17
• Stage 1: fetch this instruction, inc. PC!
• Stage 2: decode to find itʼs an slti, then
read register $r1

• Stage 3: compare value retrieved in Stage 2
with the integer 17!

• Stage 4: idle!
• Stage 5: write the result of Stage 3 in
register $r3

Datapath Walkthroughs (2/3)!

CS61CL L09 Single Cycle CPU Design (61)! Huddleston, Summer 2009 © UCB !

in
st

ru
ct

io
n"

m
em

or
y"

+4"

re
gi

st
er

s"

ALU!

D
at

a"
m

em
or

y"

imm"

3"
1"
x"

sl
ti

r3
, r

1,
 1

7"

reg[1]<17?"

17"

reg[1]"

Example: slti Instruction!

PC
"

CS61CL L09 Single Cycle CPU Design (62)! Huddleston, Summer 2009 © UCB !

Clocking Methodology!

• Storage elements clocked by same edge!
• Being physical devices, flip-flops (FF) and

combinational logic have some delays !
• Gates: delay from input change to output change !
• Signals at FF D input must be stable before active clock

edge to allow signal to travel within the FF (set-up time),
and we have the usual clock-to-Q delay!

• “Critical path” (longest path through logic)
! determines length of clock period!

Clk!

.!

.!

.!

.!

.!

.!

.!

.!

.!

.!

.!

.!

CS61CL L09 Single Cycle CPU Design (63)! Huddleston, Summer 2009 © UCB !

An Abstract View of the Critical Path!
Critical Path (Load Instruction) = !
 Delay clock through PC (FFs) +!

 Instruction Memory’s Access Time +!
 Register File’s Access Time, +!

 ALU to Perform a 32-bit Add +!
 Data Memory Access Time +"

 Stable Time for Register File Write!

clk!

5!

Rw!Ra! Rb!

Register!
File!

Rd!

Data
In!

Data!
Addr! Ideal!

Data!
Memory!

Instruction!

Instruction!
Address!

Ideal!
Instruction!

Memory!

PC
!

5!
Rs!

5!
Rt!

32!

32!32!32!
A!

B!

N
ex

t A
dd

re
ss
!

clk! clk!

A
LU
!

(Assumes a fast controller)"

