inst.eecs.berkeley.edu/~cs6lc

CS61CL : Machine Structures
Lecture #9 — Single Cycle CPU Design
2009-07-22

Jeremy Huddleston

ﬂ CS61CL L09 Single Cycle CPU Design (1)

Huddleston, Summer 2009 ® UCB

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1's in the input.

INPuT e i e e e
ottt B o U e B e
Draw the FSM... _ ¢/, a

Assume state transitions are controlled by the clock:

to a new state and produces a new output...

2 on each clock cycle the machine checks the inputs and moves

GSB1CL L09 Single Cycle CPU Design (2) Huddleston, Summer 2009 © UCB

Register Details...What’s inside?

dnar dna
B
n G-t g

* n instances of a “Flip-Flop”

C

1l

D
Keg \ster
Q

Ao
%o

* Flip-flop name because the output flips and
flops between and 0,1

*Dis “data”, Q is “output”

Also called “d-type Flip-Flop”

CSB1CL L09 Single Cycle CPU Design (4)

Huddleston, Summer 2009 ® UCB

Adder/Subtracter — One-bit adder LSB...

a3 a2 a1 | 0
+ by by by |Dbg 0 1
1
1

S3 S2 S1 | Sp

Q CSB1CL L09 Single Cycle CPU Design (5)

Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (2/2)...
ai
t D
C
a;

bl Cis

<

S; = XOR((li, bi, Ci)
i1 = MAJ(a;, b, &) = aib; + aic; + bc

ﬂ CS61CL L09 Single Cycle CPU Design (7)

Huddleston, Summer 2009 ® UCB

N 1-bit adders = 1 N-bit adder

bn-1 G- \ by ao

1
Cn o= ey e g —C
l.

SV\—I \ 50

Q CSB1CL L09 Single Cycle CPU Design (8)

Huddleston, Summer 2009 © UCB

Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

ol v
Ef_#w +

T () =

» OUTPUT

upoT

—
—
Combinational logic circuit is

used to implement a function 23 g4—cax

maps from present state and
Q input to next state and output.

CSB1CL L09 Single Cycle CPU Design (3)

ouTPUT

Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (1/2)...

3 b, ¢ |si cip
0 0 010 0
0 0 1]1 0
a3 & 4@ | 01 0/1 0
+ bs by [b; | by 01 1]/]0 1
E— 1 0 110 1
1 1 010 1
1 1 1]1 1
S =
Civ1 =

Q CSB1CL L09 Single Cycle CPU Design (6)

Huddleston, Summer 2009 © UCB

Administrivia

*Midterm handed back today

frequency
@

4 -

2 -

T T

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100 <110 <120 <130 <140 <150

Q CSB1CL L09 Single Cycle CPU Design (9)

0

Huddleston, Summer 2009 © UCB

Five Components of a Computer

Keyboard,
Memory |Devices ¢ Mouse

l
I
Processor, . Disk
: (passive) flinput C (where
Control | [programs,
l
I
I
1
[
T

Computer

:
oraere., m b data live
data live when not
Datapath

when running)
running) Display,
N - Printer

Huddleston, Summer 2009 ® UCB

ﬂ CS61CL L09 Single Cycle CPU Design (10)

The CPU

*Processor (CPU): the active part of the
computer, which does all the work
(data manipulation and decision-
making)

» Datapath: portion of the processor
which contains hardware necessary to
perform operations required by the
processor (the brawn)

< Control: portion of the processor (also

in hardware) which tells the datapath
what needs to be done (the brain

w CSB1CL L09 Single Cycle CPU Design (1)

Huddleston, Summer 2009 © UCB

Stages of the Datapath : Overview

*Problem: a single, atomic block which
“executes an instruction” (performs all
necessary operations beginnin%with
fetching the instruction) would be too
bulky and inefficient

«Solution: break up the process of

“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

* smaller stages are easier to design

- easy to optimize (change) one stage
without touching the others

CSB1CL L0 Single Cycle CPU Design (12)

Huddleston, Summer 2009 © UCB

Stages of the Datapath (1/5)

*There is a wide variety of MIPS
instructions: so what general steps do
they have in common?

«Stage 1: Instruction Fetch

* no matter what the instruction, the 32-bit
instruction must first be fetched from
memory (the cache-memory hierarchy)

+ also, this is where we Increment PC

(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

ﬂ CS61CL L09 Single Cycle CPU Design (13)

Huddleston, Summer 2009 ® UCB

Stages of the Datapath (2/5)

« Stage 2: Instruction Decode

« upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)

- first, read the opcode to determine
instruction type and field lengths

*second, read in data from all necessary
registers
- for add, read two registers
- for addi, read one register
- for jal, no reads necessary

w CSB1CL L09 Single Cycle CPU Design (14)

Huddleston, Summer 2009 © UCB

Stages of the Datapath (3/5)

»Stage 3: ALU (Arithmetic-Logic Unit)
+ the real work of most instructions is done
here: arithmetic (+, -, *, /), shifting, logic (&,
1), comparisons (s1t)
» what about loads and stores?
- 1w $t0, 40($tl)

- the address we are accessing in memory = the
value in $t1 PLUS the value 40

- so we do this addition in this stage

Q CSB1CL L0 Single Cycle CPU Design (15)

Huddleston, Summer 2009 © UCB

Stages of the Datapath (4/5)

«Stage 4: Memory Access

+ actually only the load and store
instructions do anything during this
stage; the others remain idle during this
stage or skip it all together

- since these instructions have a unique
step, we need this extra stage to account
for them

- as a result of the cache system, this
stage is expected to be fast

ﬂ CS61CL L09 Single Cycle CPU Design (16)

Huddleston, Summer 2009 ® UCB

Stages of the Datapath (5/5)

«Stage 5: Register Write
» most instructions write the result of
some computation into a register
- examples: arithmetic, logical, shifts,
loads, slt
- what about stores, branches, jumps?

- don’t write anything into a register at the
end

- these remain idle during this fifth stage or
skip it all together

w CSB1CL L09 Single Cycle CPU Design (17)

Huddleston, Summer 2009 © UCB

Generic Steps of Datapath

registers

instruction
memory
Data
memory

L— |

1. Instruction 2. Decode/ 5. Reg.
Fetch Register 3. Bxecute 4. Memory Write
Read

Huddleston, Summer 2009 © UCB

Q CSB1CL L0 Single Cycle CPU Design (18)

Datapath Walkthroughs (1/3)

*add $r3,%rl,$r2
« Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an add, then
read registers $r1 and $r2

- Stage 3: add the two values retrieved in
Stage 2

- Stage 4: idle (nothing to write to memory)

- Stage 5: write result of Stage 3 into register
$r3

ﬂ CS61CL L09 Single Cycle CPU Design (19)

Huddleston, Summer 2009 ® UCB

Example: add Instruction

eg(1]

1]jrreg|

registers

4
eal2] £
€

Datd

instruction
memory
| PP

)

B
3
3

m
U

add r3, r1, r2

ﬂ CSB1CL L09 Single Cycle CPU Design (20)

Huddleston, Summer 2009 © UCB

Example: sw Instruction

Why Five Stages? (1/2)

* Could we have a different number of
stages?

Datapath Walkthroughs (3/3)

*sw $r3, 17(%rl)
+ Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s a sw, then
read registers $r1 and $r3

- Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

- Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3

- Stage 5: idle (nothing to write into a
register)

Q CSB1CL L0 Single Cycle CPU Design (21)

Huddleston, Summer 2009 © UCB

Why Five Stages? (2/2)

olw $r3, 17(%rl)
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it's a 1w, then
read register $r1

- Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

- Stage 4: read value from memory
address compute in Stage 3

- Stage 5: write value found in Stage 4 into
register $r3

Q CSB1CL L0 Single Cycle CPU Design (24)

Huddleston, Summer 2009 © UCB

]
U

LW r3, 17(r1)

@ edll]
-g z :—' % N * Yes, and other architectures do
25] € l|eos 52 -
£ [5S¢ «So why does MIPS have five if
M @ mm] 17 o instructions tend to idle for at least
mE _ i one stage?
S * * The five stages are the union of all the
. s operations needed by all the instructions.
s w
z = * There is one type of instruction that uses
all five stages: the load
ﬂ CS61CL L09 Single Cycle CPU Design (22) Huddleston, Summer 2009 © UCB ﬂ CS61CL L09 Single Cycle CPU Design (23) Huddleston, Summer 2009 © UCB
Example: 1w Instruction Datapath Summary
[*The datapath based on data transfers
——Tegl1] required to perform instructions
E > X % regf1]+17 .
- K) s 3 e « A controller causes the right transfers
T 85| % to happen [
@ [mm] 17 E" Ird_|

@
registers

instruction
memory

memory

imm |

opcode, funct

. For each instruction, how d trol th
CPU clocking (1/2) “fow of information though the datapath?.

*Single Cycle CPU: All stages of an
instruction are completed within one
long clock cycle.

* The clock cycle is made sufficient long to

allow each instruction to complete all
stages without interruption and within

one cycle.
1. Instruction 2. Decode/ 5. Reg.
Fetch Register 3. Execute 4. Memory Write
Read

Q CSB1CL L0 Single Cycle CPU Design (27)

Huddleston, Summer 2009 © UCB

ﬂ CS61CL L09 Single Cycle CPU Design (25)

Huddleston, Summer 2009 ® UCB

ﬂ CSB1CL L09 Single Cycle CPU Design (26)

Huddleston, Summer 2009 © UCB

. For each instruction, how d trol th
CPU clocking (2/2) 7w of information though the datapath?.

* Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

* The clock is made as long as the slowest

stage.
1. Instruction 2. Decode/ 5. Reg.
Fetch Register 8. Bxecute 4. Memory Write

Read

N O O O B

- Several significant advantages over
single cycle execution: Unused stages in
a particular instruction can be skipped
2 OR instructions can be pipelined

(overlapped).

CSB1CL L09 Single Cycle CPU Design (28) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements
« meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer

ﬂ CSB1CL L09 Single Cycle CPU Design (29)

Huddleston, Summer 2009 © UCB

Review: The MIPS Instruction Formats

« All MIPS instructions are 32 bits long. 3 formats:

31 26 21 16 11 6 0

* R-type op | rs [vt | rd [shamt | |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

. |_type 31 26 21 16 0

o | s | ort]]

. J.type i 6 b11326 5 bits 5 bits 16 bits 0

op | target address]

6 bits 26 bits

* The different fields are:
- op: operation (“opcode”) of the instruction
- rs, rt, rd: the source and destination register specifiers
+ shamt: shift amount
: selects the variant of the operation in the “op” field

: address offset or immediate value
@ target address: target address of jump instruction

CSB1GL L0 Single Cycle CPU Design (30) Huddleston, Summer 2009 © UCB

The MIPS-lite Subset for today

ADDU and SUBU 3 26 21 16 1 6 0
caddu rd,rs,rt op L s T nt rd | shamt funct

6 bits. 5 bits 5 bits 5 bits 5 bits. 6 bits

esubu rd,rs,rt

R Immediate: 31 26 21 16 0
o ed ate op | s “ rt immediate

sori rt,rs,immlé 6 bits 5 bits 5 bits 16 bits
LOAD and 31 26 21 16 0
STORE Word o | s [vt] immediate

*lw rt,rs,immlé 6 bits 5 bits 5 bits 16 bits

*sw rt,rs,immlé

BRANCH: 31 26 21 16 0
op | rs | xt immediate

6 bits 5 bits 5 bits 16 bits

*beq rs,rt,immlé

ﬂ CS61CL L09 Single Cycle CPU Design (31)

Huddleston, Summer 2009 ® UCB

ALU Needs for MIPS-lite + Rest of MIPS

< Addition, subtraction, logical OR, ==:

ADDU R[rd] = R[rs] + R[rt];

SUBU R[rd] = R[rs] - R[rt];

ORI R[rt] = R[rs] | zero_ext(Imml6)...
BEQ if (R[rs] == R[rt])...

« Test to see if output == 0 for any ALU
operation gives == test. How?

*P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

@ALU follows chap 5

GSB1CL L09 Single Cycle CPU Design (32) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

* 2. Select set of datapath components

Q CSB1CL L0 Single Cycle CPU Design (33)

Huddleston, Summer 2009 © UCB

What Hardware Is Needed? (1/2)

*PC: a register which keeps track of
memory addr of the next instruction

*General Purpose Registers
- used in Stages 2 (Read) and 5 (Write)
+ MIPS has 32 of these

*Memory
- used in Stages 1 (Fetch) and 4 (R/W)

» cache system makes these two stages as
fast as the others, on average

ﬂ CS61CL L09 Single Cycle CPU Design (34)

Huddleston, Summer 2009 ® UCB

What Hardware Is Needed? (2/2)

*«ALU
- used in Stage 3
- something that performs all necessary
functions: arithmetic, logicals, etc.
- we’ll design details later

* Miscellaneous Registers

« In implementations with only one stage per
clock cycle, registers are inserted between
stages to hold intermediate data and control
signals as they travels from stage to stage.

 Note: Register is a general purpose term
meaning something that stores bits. Not all
ﬂ registers are in the “register file”.

GSB1CL L09 Single Cycle CPU Design (35) Huddleston, Summer 2009 © UCB

Combinational Logic Elements (Building Blocks)

CarryIn
A 32

N

Eﬁ? 37 Sum
B 32 CarryOut

+MUX A

* Adder

«ALU AU

Result

Q CSB1CL L0 Single Cycle CPU Design (36)

Huddleston, Summer 2009 © UCB

Storage Element: Idealized Memory

* Memory (idealized) Write Emele ‘Address

+ One input bus: Data In
- One output bus: Data Out Da%& DLa;;‘”—»
« Memory word is found by: Clk—]

- Address selects the word to put on Data Out

+ Write Enable = 1: address selects the memory
word to be written via the Data In bus

¢ Clock input (CLK)
+ The CLK input is a factor ONLY during write

operation
- During read operation, behaves as a combinational edge of clock
logic block:
ﬂ - Address valid = Data Out valid after “access time.” @
CSB1CL L09 Single Cycle CPU Design (37) Huddleston, Summer 2009 © UCB CS61CL L09 Single Cycle CPU Design (38) Huddleston, Summer 2009 © UCB

Storage Element: Register (Building Block)

«Similar to D Flip Flop except
* N-bit input and output
* Write Enable input

*Write Enable:

* negated (or deasserted) (0): ck
Data Out will not change

- asserted (1):
Data Out will become Data In on positive

Write Enable

Data Out

Data In

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements
+ meaning of each instruction is given by the register transfers
+ datapath must include storage element for ISA registers
« datapath must support each register transfer
« 2. Select set of datapath components and establish
clocking methodology
« 3. Assemble datapath meeting requirements
« 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.
« 5. Assemble the control logic (hard part!)

Overview of the Instruction Fetch Unit

*«The common RTL operations
+ Fetch the Instruction: mem[PC]
» Update the program counter:
- Sequential Code: PC < PC +4
- Branch and Jump: PC < “something else”

clk PC
Next Address
Logic
Address Instruction Word
Instruction

Storage Element: Register File

* Register File consists of 32 registers: RWRA RB
+ Two 32-bit output busses: Write E"ablle sJ(5 sJ(
busA and busB busA
+ One 32-bit input bus: busW busW, 32 32-bit 32
32 Registers | p,sB
« Register is selected by: Clk — 33

* RA (number) selects the register to put on busA (data)
- RB (number) selects the register to put on busB (data)
* RW (number) selects the register to be written
via busW (data) when Write Enable is 1
« Clock input (clk)
+ The clk input is a factor ONLY during write operation
. ll;':lurirl:g read operation, behaves as a combinational logic
ock:

- RAorRB valid = busA or busB valid after “access time.”

Q CSB1CL L0 Single Cycle CPU Design (39)

Huddleston, Summer 2009 © UCB

Add & Subtract

« R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt
- Ra, Rb, and Rw come from instruction’s Rs, Rt, and Rd fields

« ALUctr and RegWr: control logic after decoding the instruction

31 26 21 16 11 6 0
| op [rs [rt [rd [shamt funct

6bits Sbits Sbits 5Sbits 5 bits 6 bits

* ... Already defined the register file & ALU
s Rt

RegWr S'FdsT/ 5+
L busA

Rw Ra Rb o §

busW,
+f 32 32-bit E ul—.
— I Registers busB 3
clk

ALUctr

ﬂ CS61CL L09 Single Cycle CPU Design (40)

Huddleston, Summer 2009 ® UCB

@ Memory 32
CS61CL L09 Single Cycle CPU Design (41) Huddleston, Summer 2009 © UCB

Logical Operations with Immediate
*R[rt] = R[rs] op ZeroExt[imm16]
31 26 21 16

op “ rs | rt | immediate I

316 bits 5 bits 5 bits 16 15 16 bits 0

[0000000000000000] immediate]

16 bits 16 bits
But we’re writing to Rt register??
RegWr Rd Rs Rt ALUctr

L% o &
Rw Ra Rb

busW

RegFile
clk

Logical Operations with Inmediate
*R[rt] = R[rs] op ZeroExt[imm16]
31 26 21 16

I_“E [s [T o] immediate |

31 6 bits 5 bits. Sbits ¢ 5 16 bits 0

ReeDst [[0000000000000000] immediate]
R R 16 bits 16 bits

What about Rt register read??

5{5 5} ALUctr

Rw Ra Rb

kS RegFile

Q CSB1CL L0 Single Cycle CPU Design (42)

Huddleston, Summer 2009 © UCB

Load Operations
. R[rtL: Mem[R[rs] + SignExt[imm16]]
xamzple: 1w rt,rs,immlé
31 0 21 16
| op [rs [vt | immediate |
6 bits 5bits 5 bits 16 bits

RegDst Rq Rt

RegW; Rs Rt ALUct
e [y o

Rw Ra Rb

o) RegFile

cIk!

IXFOIZ,

ALUSrc

clk!

N
3

imml6 2
g
- ALUSrc

ﬂ @ + Already defined 32-bit MUX; Zero Ext?
CS61CL L09 Single Cycle CPU Design (43) Huddleston, Summer 2009 ® UCB CSB1CL L09 Single Cycle CPU Design (44) Huddleston, Summer 2009 © UCB

Q CSB1CL L09 Single Cycle CPU Design (45)

Huddleston, Summer 2009 © UCB

Load Operations

. R[rtL: Mem[R][rs] + SignExt[imm16]]
2)l(amz[éile: lw rt,rs,immlé

21 16
| op [rs [rt] immediate |
6 bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
\L o] MemWr

Rs R
mr]y

Rw Ra Rb

busW
2 RegFile

clk!

Q&f -

Huddleston, Summer 2009 ® UCB

Store Operations
* Mem[R[rs] + SignFTxt[iném16] 1=R[rt]

Ex.: sw rt, rs, imml

31 20 21 16
| op [s [rt | immediate |
6bits 5Sbits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
m MemWr
RegW; Rs Rt
EELE
busw| R Ra Rb
ko RegFile
clk]
‘WrEn Adr
imml16 Data
Memory

[#74 -
st g v

Huddleston, Summer 2009 © UCB

The Branch Instruction

31 20 21 16
| op [rs [rt] immediate |
6 bits 5bits 5 bits 16 bits

beq rs, rt, immlé

*»mem[PC] Fetch the instruction from memory

» Equal = R[rs] == R[rt] Calculate branch condition
« if (Equal) Calculate the next instruction’s address

- PC = PC + 4 + (SignExt(imm16) x 4)
else
- PC=PC+4

ﬂ CS61CL L09 Single Cycle CPU Design (49)

Huddleston, Summer 2009 ® UCB

Datapath for Branch Operations
beq rs,rt,immi6
Datapath generates condition (equal)

31 20 21 16 0
| op [s [rt | immediate |
6bits Sbits 5 bits 16 bits
Inst Address

Equal

RegWr Rs Rt ALUctr
L4 % %

Rw Ra Rb

RegFile

busW

cIk!

Already have mux, adder, need special sigLn
extender for PC, need equal compare (sub?)

GSB1CL L09 Single Cycle CPU Design (50) Huddleston, Summer 2009 © UCB

An Abstract View of the Implementation

f b
i Control !
Ideal ! 1
Instruction | | Instruction Control Signals Conditions !
Memory [e S A e I T B -
Rd Rs| Rt
ostretion |____X_ X _ X Lo
/
: Rw Ra Ro]—2 \: Data Data
| 32 32 32, 1Addr] ygeal | o
1 Resi > - leal | Out
f egister = H Data
! File | B S . Nemory
1 /I\ | Data Lq
1
H clk 32 H In ek
1 H)
'
R Datapath __/

ﬂ CS61CL L09 Single Cycle CPU Design (52)

Huddleston, Summer 2009 ® UCB

Summary: A Single Cycle Datapath
¢ We have

everythi ng 2PC sol— instr Instruction<31:0>
except control 1|, feteh

H clk] it
signals Reebst uni

Rd Rt

Rs Rt
3§ ¥

busw| RW Ra Rb

0 RegFile

clk!

WrEn Adr

1 ata
o Data In Data
clk —t Memory

Huddleston, Summer 2009 © UCB

Store Operations

« Mem[R[rs] + SignExt[imm16]] = R[rt]
Ex.: sw rt, rs, immlé

31 26 21 16 0
| op [rs [vt | immediate |
6bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
MemWr

RegWi Rs Rt
Ely by
busw | R¥ Ra Rb
3 RegFile
I
clk 32 WiEn Adr
imml6) Data In Data
Memor:
ALUSrc ©Ik Y

QI -

Huddleston, Summer 2009 © UCB

Putting it All Together:A Single Cycle Datapath
Inst ~ T T Instruction<31:0>
Memory ';’ > |=
an 75 17

nPC sel ALUctr MemtoReg

MemWr

WrEn Adr

1 ata
Data In Data
clk —t Memory
T

Huddleston, Summer 2009 © UCB

“And In conclusion...”

* N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

* XOR serves as conditional inverter

*CPU design involves Datapath,Control
« Datapath in MIPS involves 5 CPU stages
1. Instruction Fetch
2. Instruction Decode & Register Read
ALU (Execute)
Memory

oo w

. Register Write

Huddleston, Summer 2009 © UCB

Bonus slides

*These are extra slides that used to be
included in lecture notes‘, but have
been moved to this, the “bonus” area
to serve as a supplement.

*The slides will appear in the order they
would have in the normal presentation

. Bonus

CSB1CL L09 Single Cycle CPU Design (55) Huddleston, Summer 2009 © UCB

Review of Timing Terms

« Clock (CLK) - steady square wave that
synchronizes system

« Setup Time - when the input must be stable before
the rising edge of the CLK

* Hold Time - when the input must be stable after the
rising edge of the CLK

« “CLK-to-Q” Delay - how long it takes the output to
change, measured from the rising edge

« Flip-flop - one bit of state that samples every rising
edge of the CLK

« Register - several bits of state that samples on
rising edge of CLK or on LOAD

@ CSB1CL L09 Single Cycle CPU Design (56)

Huddleston, Summer 2009 © UCB

What about overflow?

«Consider a 2-bit signedgﬁE % oveC[flcgw:

10 = -2
11 = -1
i S P S
01 = 1 _
S, Se
* Overflows when...

* Cin, but no C,, = A,B both > 0, overflow!
* Coupy but no C;, = A,B both < 0, overflow!

overflow = ¢,, XOR ¢;,_1

ﬂ CS61CL L09 Single Cycle CPU Design (58)

Huddleston, Summer 2009 ® UCB

Extremely Clever Subtractor

bt G b 4 be Go
Cn e Cf.j < C suB
Sn-i Sy So
overflow

@ CSB1CL L09 Single Cycle CPU Design (59)

Huddleston, Summer 2009 © UCB

What about overflow?
«Consider a 2-bit signed # & overflow:
¢10 = -2 + -2 or -1
*1ll = -1 + -2 only

+00 = 0 NOTHING!
*01 = 1 + 1 only Co
*Highest adder

S So
+C, = Carry-in = C;,, C, = Carry-out =C_;

*No C,,, or C;, = NO overflow!

What * C;, and C_,, = NO overflow!

op?(~C,, butno C,, = A,B both > 0, overflow!
[- C,ut but no C;, = A,B both <0, overflow!]

Q CSB1CL L0 Single Cycle CPU Design (57)

Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (2/3)

eslti $r3,%r1,17
« Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an s1ti, then
read register $r1

+ Stage 3: compare value retrieved in Stage 2
with the integer 17

- Stage 4: idle

- Stage 5: write the result of Stage 3 in
register $r3

Q CSB1CL L09 Single Cycle CPU Design (60)

Huddleston, Summer 2009 © UCB

Example: s1ti Instruction

X) eg[1]
&> — 2 <172
25 [1 2 d >
2E Rl © e
7] qu 3! (=)
= £
imm
@ 17

]
U

sltir3, r1, 17

ﬂ CS61CL L09 Single Cycle CPU Design (61)

Huddleston, Summer 2009 ® UCB

Clocking Methodology
Clk

« Storage elements clocked by same edge

* Being physical devices, flip-flops (FF) and
combinational logic have some delays
- Gates: delay from input change to output change

- Signals at FF D input must be stable before active clock
edge to allow signal to travel within the FF (set-up time),
and we have the usual clock-to-Q delay

« “Critical path” (longest path through logic)

@ determines length of clock period

GSB1CL L09 Single Cycle CPU Design (62) Huddleston, Summer 2009 © UCB

An Abstract View of the Critical Path
Critical Path (Load Instruction) =
Delay clock through PC (FFs) +
Instruction Memory’s Access Time +
Register File’s Access Time, +
ALU to Perform a 32-bit Add +

Data Memory Access Time +
Ideal Stable Time for Register File Write
Instruction Instructior
Memory 10 TRe Rt (Assumes a fast controller)
Instruction 3 3
Address A

Rw Ra Data

3 3 N2 Addr] Ideal
Register g Data
File B R’[emory
A Data k&
' In o
clk clk 32

Q CSB1CL L0 Single Cycle CPU Design (63)

Huddleston, Summer 2009 © UCB

