inst.eecs.berke%ey.edu/~cs€1c

Lecture #9 — Single Cycle CPU Design
2009-07-22

Jeremy Huddleston

ﬂ CS61CL L09 Single Cycle CPU Design (1)

Huddleston, Summer 2009 ® UCB

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1's in the input.

cuthT S G) W () WD -
Draw the FSM... _ ¢/, A

Assume state transitions are controlled by the clock:
on each clock cycle the machine checks the inputs and moves
w to a new state and produces a new output...

CSB1CL L09 Single Cycle CPU Design (2)

Huddleston, Summer 2009 © UCB

Register Details...What’s inside?

dna dn-a
B
n CLA—(Gra

* n instances of a “Flip-Flop”

h——k 7D CLX
Register
Q

1\t

A
FF %:r
%o

* Flip-flop name because the output flips and
flops between and 0,1

*Dis “data”, Q is “output”

Also called “d-type Flip-Flop”

CS61CL L09 Single Cycle CPU Design (4)

Huddleston, Summer 2009 ® UCB

Adder/Subtracter — One-bit adder LSB...

a by |so ¢

az 4adg 4 | Q
+ b3 b2 b1 b()
S3 S2 81| 8o

ﬂ CSB1CL L09 Single Cycle CPU Design (5)

Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (2/2)...
aq
be '——D_ S
s =D

ap

bl Cis

<

S; = XOR(ai, bz Ci)
civ1 = MAI(a;, b, &) = aib; + aic; + bc

ﬂ CS61CL L09 Single Cycle CPU Design (7)

Huddleston, Summer 2009 ® UCB

N 1-bit adders = 1 N-bit adder

by\—l G-t , .

i
- +?WJ+Qé#%
l

7]
§

ﬂ CSB1CL L09 Single Cycle CPU Design (8)

Huddleston, Summer 2009 © UCB

Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

l iu‘?" ©
E—\\’@_vaLLK +

» OUTPUT
tesend vect (o)
¥ e CPS} stae.
ot
(o
—_—
— -
. — . NS OuUTRUT
Combinational logic circuit is
used to implement a function 23 4—ax

maps from present state and Ps
Q input to next state and output.

CSB1CL L09 Single Cycle CPU Design (3)

Huddleston, Summer 2009 © UCB

Adder/Subtracter — One-bit adder (1/2)...

a; b c|si cin
0O 0 0/0 O
0 0 1|1 0
az az |2 | 01 0[1 0
+ b3z by by |by 01 1]/0 1
S3 S2 | S1 | So 1 0 01 0
E— 1 0 1]0 1
1 1 010 1
1 1 1]1 1
S =
Ciy1 =

Q CSB1CL L09 Single Cycle CPU Design (6)

Huddleston, Summer 2009 © UCB

Administrivia

*Midterm handed back today

frequency
@

2

0

<10 <20 <30 <40 <50 <60 <70 <80 <90 <100 <110 <120 <130 <140 <150

Q CSB1CL L09 Single Cycle CPU Design (9)

Huddleston, Summer 2009 © UCB

Five Components of a Computer

Keyboard,
l’ Mouse

1
| m—
Processori (“F’)'g;“s'i‘\’/g Disk
Control : m ~pr($gﬁﬁs,
i
1
1
1
T

Computer

:
oraere., w b data live
data live when not
Datapath

when running)
running) Display,
N . Printer

ﬂ CS61CL L09 Single Cycle CPU Design (10)

Huddleston, Summer 2009 ® UCB

The CPU

*Processor (CPU): the active part of the
computer, which does all the work
(data manipulation and decision-
making)

« Datapath: portion of the processor
which contains hardware necessary to
perform operations required by the
processor (the brawn)

« Control: portion of the processor (also

in hardware) which tells the datapath
what needs to be done (the brain

Huddleston, Summer 2009 © UCB

Stages of the Datapath : Overview

*Problem: a single, atomic block which
“executes an instruction” (performs all
necessary operations beginnin%with
fetching the instruction) would be too
bulky and inefficient

«Solution: break up the process of
“executing an instruction” into stages,
and then connect the stages to create
the whole datapath

* smaller stages are easier to design

- easy to optimize (change) one stage
@ without touching the others

CSB1CL L09 Single Cycle CPU Design (12) Huddleston, Summer 2009 © UCB

Stages of the Datapath (1/5)

*There is a wide variety of MIPS
instructions: so what general steps do
they have in common?

- Stage 1: Instruction Fetch

* no matter what the instruction, the 32-bit
instruction must first be fetched from
memory (the cache-memory hierarchy)

+ also, this is where we Increment PC

(that is, PC = PC + 4, to point to the next
instruction: byte addressing so + 4)

ﬂ CS61CL L09 Single Cycle CPU Design (13)

Huddleston, Summer 2009 ® UCB

Stages of the Datapath (2/5)

« Stage 2: Instruction Decode

« upon fetching the instruction, we next
gather data from the fields (decode all
necessary instruction data)

- first, read the opcode to determine
instruction type and field lengths
* second, read in data from all necessary
registers
- for add, read two registers
- for addi, read one register
- for jal, no reads necessary

Huddleston, Summer 2009 © UCB

Stages of the Datapath (3/5)

»Stage 3: ALU (Arithmetic-Logic Unit)
« the real work of most instructions is done
here: arithmetic (+, -, *, /), shifting, logic (&,
1), comparisons (s1t)
»what about loads and stores?
- 1w $t0, 40($tl)

- the address we are accessing in memory = the
value in $t1 PLUS the value 40

- so we do this addition in this stage

@ CSB1CL L09 Single Cycle CPU Design (15)

Huddleston, Summer 2009 © UCB

Stages of the Datapath (4/5)

«Stage 4: Memory Access

+ actually only the load and store
instructions do anything during this
stage; the others remain idle during this
stage or skip it all together

- since these instructions have a unique
step, we need this extra stage to account
for them

- as a result of the cache system, this
stage is expected to be fast

ﬂ CS61CL L09 Single Cycle CPU Design (16)

Huddleston, Summer 2009 ® UCB

Stages of the Datapath (5/5)

«Stage 5: Register Write
» most instructions write the result of
some computation into a register
- examples: arithmetic, logical, shifts,
loads, slt
- what about stores, branches, jumps?

- don’t write anything into a register at the
end

- these remain idle during this fifth stage or
skip it all together

Huddleston, Summer 2009 © UCB

Generic Steps of Datapath

registers

instruction
memory
PEHE

Data
memory

L— |

1. Instruction 2. Decode/ 5. Reg.
Fetch Register 3. Bxecute 4. Memory Write
Read

@ CSB1CL L09 Single Cycle CPU Design (18)

Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (1/3)

*add $r3,%rl,%r2 # r3 = rl+r2
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an add, then
read registers $r1 and $r2

- Stage 3: add the two values retrieved in
Stage 2

- Stage 4: idle (nothing to write to memory)

- Stage 5: write result of Stage 3 into register
$r3

ﬂ CS61CL L09 Single Cycle CPU Design (19)

Huddleston, Summer 2009 ® UCB

Example: add Instruction

eg(1]

registers

[1] +reg[2l

egl2]

Dat
mem(

instruction
memory
| Pl

rm)

By
3
3

n
U

add r3, r1, r2

ﬂ CSB1CL L09 Single Cycle CPU Design (20)

Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (3/3)

*sw $r3, 17(%rl)
+ Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s a sw, then
read registers $r1 and $r3

- Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

- Stage 4: write value in register $r3
(retrieved in Stage 2) into memory
address computed in Stage 3

- Stage 5: idle (nothing to write into a
register)

@ CSB1CL L09 Single Cycle CPU Design (21)

Huddleston, Summer 2009 © UCB

Example: sw Instruction

Why Five Stages? (1/2)

* Could we have a different number of

Why Five Stages? (2/2)

olw $r3, 17(%rl)
- Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it's a 1w, then
read register $r1

- Stage 3: add 17 to value in register $r1
(retrieved in Stage 2)

- Stage 4: read value from memory
address compute in Stage 3

- Stage 5: write value found in Stage 4 into
register $r3

@ CSB1CL L09 Single Cycle CPU Design (24)

Huddleston, Summer 2009 © UCB

A
U

LW r3, 17(r1)

C |k [z tee F stages?
A eIz, * Yes, and other architectures do
S5 € |eas g8 .
%e og *So why does MIPS have five if
M @ [mm] 17 o instructions tend to idle for at least
mE _ v one stage?
= * * The five stages are the union of all the
= s operations needed by all the instructions.
= w
Z = * There is one type of instruction that uses
all five stages: the load
ﬂ CS61CL L09 Single Cycle CPU Design (22) Huddleston, Summer 2009 © UCB ﬂ CS61CL L09 Single Cycle CPU Design (23) Huddleston, Summer 2009 © UCB
Example: 1w Instruction Datapath Summary
| *The datapath based on data transfers
——Tegl1] required to perform instructions
S X 8 11417 .
r§ § I s]; [- « A controller causes the right transfers
52 P~ 8 é x to happen [
@ [imm 17 ET &

@
registers

instruction
memory

memory

imm |

opcode, funct

ﬂ CS61CL L09 Single Cycle CPU Design (25)

Huddleston, Summer 2009 ® UCB

ﬂ CSB1CL L09 Single Cycle CPU Design (26)

Huddleston, Summer 2009 © UCB

. For each instruction, how d trol th
CPU clocking (1/2) "fow of information though the datapath?

*Single Cycle CPU: All stages of an
instruction are completed within one
long clock cycle.

* The clock cycle is made sufficient long to

allow each instruction to complete all
stages without interruption and within

one cycle.
1. Instruction 2. Decode/ 5. Reg.
Fetch Register 3. Execute 4. Memory Write
Read

@ CSB1CL L09 Single Cycle CPU Design (27)

Huddleston, Summer 2009 © UCB

. For each instruction, how d trol th
CPU clocking (2/2) "fow of information though the datapath?

* Multiple-cycle CPU: Only one stage of
instruction per clock cycle.

* The clock is made as long as the slowest

stage.
1. Instruction 2. Decode/ 5. Reg.
Fetch Register 8. Bxecute 4. Memory Write

Read

N O O O B

- Several significant advantages over
single cycle execution: Unused stages in
a particular instruction can be skipped
Z OR instructions can be pipelined

(overlapped).

CSG1CL L09 Single Cycle CPU Design (28) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements
« meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer

« 2. Select set of datapath components and establish
clocking methodology

« 3. Assemble datapath meeting requirements

« 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer.

« 5. Assemble the control logic (hard part!)

ﬂ CSB1CL L09 Single Cycle CPU Design (29)

Huddleston, Summer 2009 © UCB

Review: The MIPS Instruction Formats

« All MIPS instructions are 32 bits long. 3 formats:

31 26 21 16 11 6 0
* R-type op | rs | rt | rd | shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
- I-type 31 26 21 16 0
[op T v T v] address/immediate]
. its 5 bits 5 bits its
J-type i 6 bit: ” bit: bit: 16 bits. 0
op | target address |

6 bits 26 bits

* The different fields are:
- op: operation (“opcode”) of the instruction
« s, rt, rd: the source and destination register specifiers
+ shamt: shift amount
« funct: selects the variant of the operation in the “op” field

- target address: target address of jump instruction

2 ; address / immediate: address offset or immediate value

CSB1CL L09 Single Cycle CPU Design (30) Huddleston, Summer 2009 © UCB

The MIPS-lite Subset for today

ADDU and SUBU 3 26 21 16 1 6 0
caddu rd,rs,rt op L s T nt rd | shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

esubu rd,rs,rt

: . 31 26 21 16 0
OR Immedlate' op | rs “ rt immediate

sori rt,rs,immlé 6 bits 5 bits 5 bits 16 bits
LOAD and 31 26 21 16 0
STORE Word o | s [vt] immediate

*lw rt,rs,immlé 6 bits 5 bits 5 bits 16 bits

*sw rt,rs,immlé

BRANCH: 31 26 21 16 0
op | rs | immediate

6 bits 5 bits 5 bits 16 bits

*beq rs,rt,immlé

ﬂ CS61CL L09 Single Cycle CPU Design (31)

Huddleston, Summer 2009 ® UCB

ALU Needs for MIPS-lite + Rest of MIPS

< Addition, subtraction, logical OR, ==:

ADDU R[rd] = R[rs] + R[rt];

SUBU R[rd] = R[rs] - R[rt];

ORI R[rt] = R[rs] | zero_ext(Imml6)...
BEQ if (R[rs] == R[rt])...

« Test to see if output == 0 for any ALU
operation gives == test. How?

*P&H also adds AND,
Set Less Than (1 if A < B, 0 otherwise)

@ALU follows chap 5

GSB1CL L09 Single Cycle CPU Design (32) Huddleston, Summer 2009 © UCB

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements
« meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer
* 2. Select set of datapath components and establish
clocking methodology
« 3. Assemble datapath meeting requirements
« 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

5. Assemble the control logic (hard part!)

Q CSB1CL L09 Single Cycle CPU Design (33)

Huddleston, Summer 2009 © UCB

What Hardware Is Needed? (1/2)

*PC: a register which keeps track of
memory addr of the next instruction

*General Purpose Registers
- used in Stages 2 (Read) and 5 (Write)
+ MIPS has 32 of these

*Memory
- used in Stages 1 (Fetch) and 4 (R/W)

» cache system makes these two stages as
fast as the others, on average

ﬂ CS61CL L09 Single Cycle CPU Design (34)

Huddleston, Summer 2009 ® UCB

What Hardware Is Needed? (2/2)

*«ALU
- used in Stage 3
- something that performs all necessary
functions: arithmetic, logicals, etc.
- we’ll design details later

* Miscellaneous Registers

« In implementations with only one stage per
clock cycle, registers are inserted between
stages to hold intermediate data and control
signals as they travels from stage to stage.

 Note: Register is a general purpose term
meaning something that stores bits. Not all
ﬂ registers are in the “register file”.

GSB1CL L09 Single Cycle CPU Design (35) Huddleston, Summer 2009 © UCB

Combinational Logic Elements (Building Blocks)

CarryIn
A 32

N

Eﬁ? 37 Sum
B 32 CarryOut

+MUX A

* Adder

«ALU AU

Result

Q CSB1CL L09 Single Cycle CPU Design (36)

Huddleston, Summer 2009 © UCB

Storage Element: Idealized Memory

* Memory (idealized)

+ One input bus: Data In

+ One output bus: Data Out DL;‘;& DL&’;;'”—'

» Memory word is found by: Ck—{
- Address selects the word to put on Data Out

+ Write Enable = 1: address selects the memory
word to be written via the Data In bus

Write Ena‘ble ‘ Address

* Clock input (CLK)
+ The CLK input is a factor ONLY during write - asserted (1):
operation Data Out will become Data In on positive
- During read operation, behaves as a combinational edge of clock
logic block:
ﬂ - Address valid = Data Out valid after “access time.” ﬂ
CS61CL L09 Single Cycle CPU Design (37) Huddleston, Summer 2009 © UCB CS61CL L09 Single Cycle CPU Design (38) Huddleston, Summer 2009 © UCB

Storage Element: Register (Building Block)

«Similar to D Flip Flop except
* N-bit input and output
* Write Enable input

* Write Enable:

* negated (or deasserted) (0): ck
Data Out will not change

Write Enable

Data Out

Data In

How to Design a Processor: step-by-step

« 1. Analyze instruction set architecture (ISA)
=> datapath requirements

+ meaning of each instruction is given by the register transfers
- datapath must include storage element for ISA registers
- datapath must support each register transfer
« 2. Select set of datapath components and establish
clocking methodology
« 3. Assemble datapath meeting requirements
4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

« 5. Assemble the control logic (hard part!)

Overview of the Instruction Fetch Unit

*«The common RTL operations
+ Fetch the Instruction: mem[PC]
» Update the program counter:
- Sequential Code: PC < PC + 4
- Branch and Jump: PC < “something else”

clk PC
Next Address
Logic
Address Instruction Word
Instruction

Storage Element: Register File

* Register File consists of 32 registers: RWRA RB
+ Two 32-bit output busses: Write Enablle sJ(5] 5J(
busA and busB busA
+ One 32-bit input bus: busW busW, 32 32-bit 32
32 Registers | p,sB
« Register is selected by: Clk — 33

* RA (number) selects the register to put on busA (data)
- RB (number) selects the register to put on busB (data)

* RW (number) selects the register to be written
via busW (data) when Write Enable is 1

« Clock input (clk)
+ The clk input is a factor ONLY during write operation
+ During read operation, behaves as a combinational logic
block:

RA or RB valid = busA or busB valid after “access time.”

Q CSB1CL L09 Single Cycle CPU Design (39)

Huddleston, Summer 2009 © UCB

ﬂ CS61CL L09 Single Cycle CPU Design (40)

Huddleston, Summer 2009 ® UCB

ﬂ Memory 32
CS61CL L09 Single Cycle CPU Design (41) Huddleston, Summer 2009 © UCB

Add & Subtract

« R[rd] = R[rs] op R[rt] Ex.: addU rd,rs,rt
- Ra, Rb, and Rw come from instruction’s Rs, Rt, and Rd fields

« ALUctr and RegWr: control logic after decoding the instruction

31 20 21 16 11 6 0
| op [rs [rt | rd [shamt[funct]

6bits Sbits Sbits 5Sbits 5 bits 6 bits

* ... Already defined the register file & ALU

Rd Rs Rt
RegWrSJ(SJ(SJ(ATLUctr
l busA
Rw Ra Rb

32 N

busW,
7 32 32-bit E ple——
) Registers busB 3
clk 32

Huddleston, Summer 2009 © UCB

Logical O . ith | i

*R[rt] = R[rs] op ZeroExt[imm16]

0

[Cop T v T vt] immediate |

31 6 bits 5 bits Sbits ¢ 15 16 bits 0

[0000000000000000 | immediate |
16 bits 16 bits

But we’re writing to Rt register??

Rd Rs R
RegWrS* 5*% ﬂ: ALUctr

busw| R Ra Rb

RegFile
clk]

Logical Q . ith 1 i

*R[rt] = R[rs]ﬂop EeroExt[iTm1 6]

0

I_OE [s [T o] immediate |

31 6 bits 5 bits Sbits ¢ 5 16 bits 0

ReeDst [[0000000000000000] immediate]
SRS R 16 bits 16 bits

What about Rt register read??

éj/s E; ALUctr

Rw Ra Rb

kS RegFile

clk]

ALUSrc

ﬂ CS61CL L09 Single Cycle CPU Design (43)

Huddleston, Summer 2009 ® UCB

ﬂ « Already defined 32-bit MUX; Zero Ext?

GSB1CL L09 Single Cycle CPU Design (44) Huddleston, Summer 2009 © UCB

_Load Operations
. R[rtL: Mem[R]rs] + SignExt[imm16]]
xamzple: 1w rt,rs,immlé
3] 6 2l 16
| op [rs [vt | immediate |
6bits 5bits 5 bits 16 bits

RegDst Rq Rt

o/
Rs Rt
RegW‘r5 5; 5* ALUctr

Rw Ra Rb

o RegFile

cIk!

ALUSrc

Huddleston, Summer 2009 © UCB

_Load Operations
. R[rtL: Mem[R][rs] + SignExt[imm16]]
xamzple: lw rt,rs,immlé
31 6 21 16
| op [rs [rt] immediate |
6bits S5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg
busW Rw Ra Rb
2 RegFile
clk] =1
%
imm16 g
&

Qd -

Huddleston, Summer 2009 ® UCB

_Store Operations

» Mem[R[rs] + SignExt[imm16]] = R[rt]

Ex.: sw rt,
31 26

rs, immlé

21 16

[op T

rs | rt |

immediate |

6 bits

S5bits 5 bits
RegDst Rd Rt

RegWr 5
|

Rs Rt

T %

busW

ko RegFile

Rw Ra Rb

cIk!

JIPUANXH

16 bits

ALUctr MemtoReg

_32[WiEn Adr

Data
Memory

ﬂ CSB1CL L09 Single Cycle CPU Design (47)

Huddleston, Summer 2009 © UCB

Store Operations

« Mem[R[rs] + SignExt[imm16]] = R[rt]
Ex.: sw rt, rs, immlé

31 26 21 16 0
| op [rs [vt | immediate |
6bits 5bits 5 bits 16 bits
RegDst Rd Rt ALUctr MemtoReg

MemWr

RegWr Rs Rt

LY % %
busw | R¥ Ra Rb
3 RegFile
clk! 32 WiEn Adr
imml6) Data In Data
ALUSrc ©Ik Memory

Q! -

Huddleston, Summer 2009 © UCB

_The Branch Instruction
31 20 21 16
L op [rs [rt | immediate |
6 bits 5bits 5 bits 16 bits

beq rs, rt, immlé

*»mem[PC] Fetch the instruction from memory

» Equal = R[rs] == R[rt] Calculate branch condition
« if (Equal) Calculate the next instruction’s address

- PC = PC + 4 + (SignExt(imm16) x 4)
else
- PC=PC+4

ﬂ CS61CL L09 Single Cycle CPU Design (49)

Huddleston, Summer 2009 ® UCB

*beq rs, rt,imm16 .
Datapath generates condition (equal)
31 20 21 16 0
| op [s [rt | immediate |
6bits Sbits 5 bits 16 bits
Inst Address
Equal
ALUctr

RegWr Rs Rt
Ty Y

busw| RW Ra Rb

RegFile
clk!

Already have mux, adder, need special sigLn
extender for PC, need equal compare (su

CSB1CL L09 Single Cycle CPU Design (50)

?)

Huddleston, Summer 2009 © UCB

Putting it All Together:A Single Cycle Datapath
Inst T~ Instruction<31:0>
Memory 2 |z
Adr o A
Rs Rt Rd Imml6

nPC sel |RegDst

MemtoReg

Equal ALUctr

RegWr | Rs Rt
LY 5 ¥
busW Rw Ra Rb
£ RegFile
m
clk = 32 WiEn Adr
.) "
imm16 " s Data In Data
clk Memory

i |} I I
ﬂ ExtOp ALUSrc
CS1GL Lo Single Cyle CPU Design 51

Huddleston, Summer 2009 © UCB

[b
i Control !
Ideal 1 f
Instruction | | Instruction Control Signals Conditions '
Memory e A Ry N N RPN R -
Rd Rs| Rt
Instruction | _ _ _ _§ _ _5_ _ _5 _____ b _
A \
1
Rw Ra Rb , Data Data
) 3)32 iAddr] pdeal | out
Register = ! Data |—
File B > I Nemory
/‘\ | Data Lq
clk 32 i In ek
1
______________________ Datapath __.

ﬂ CS61CL L09 Single Cycle CPU Design (52)

Huddleston, Summer 2009 ® UCB

* We have
everything
except control
signals

imm16

nPC sel — instr
fetch
clk —> unit

Instruction<31:0>

Rs Rt
S ¥
Rw Ra Rb
RegFile

w
S

clk!

32 WiEn Adr

16

1puAXy
]

Data
_ [Memory

w ExtOp ALUSre
S ——

Huddleston, Summer 2009 © UCB

“And In conclusion...”

* N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

* XOR serves as conditional inverter

*CPU design involves Datapath,Control

« Datapath in MIPS involves 5 CPU stages
1. Instruction Fetch
2. Instruction Decode & Register Read

. ALU (Execute)

. Memory
Register Write

Q CSB1CL L09 Single Cycle CPU Design (54)

(S I]

Huddleston, Summer 2009 © UCB

Bonus slides

*These are extra slides that used to be
included in lecture notes‘, but have
been moved to this, the “bonus” area
to serve as a supplement.

*The slides will appear in the order they
would have in the normal presentation

. Bonus

CSG1CL L09 Single Cycle CPU Design (55) Huddleston, Summer 2009 © UCB

Review of Timing Terms

« Clock (CLK) - steady square wave that
synchronizes system

« Setup Time - when the input must be stable before
the rising edge of the CLK

* Hold Time - when the input must be stable after the
rising edge of the CLK

* “CLK-to-Q” Delay - how long it takes the output to
change, measured from the rising edge

« Flip-flop - one bit of state that samples every rising
edge of the CLK

« Register - several bits of state that samples on
rising edge of CLK or on LOAD

Huddleston, Summer 2009 © UCB

What about overflow?

«Consider a 2-bit signedgﬁE §(ovearflcgw:

10 = -2
11 = -1
01 = 1
S, Se

* Overflows when...
*Cin, but no C,, = A,B both > 0, overflow!
* Coupy but no C;, = A,B both <0, overflow!

overflow = ¢,, XOR ¢,,_1

ﬂ CS61CL L09 Single Cycle CPU Design (58)

Huddleston, Summer 2009 ® UCB

Extremely Clever Subtractor

b Gany b dy bo Qo
C»\‘ Coa G < = suB
l i
Sh—\ S\ Se
overflow

Huddleston, Summer 2009 © UCB

What about overflow?
«Consider a 2-bit signed # & overflow:
*10 = -2 + -2 or -1
*11 = -1 + -2 only
<00 0 NOTHING!
01 = 1+ 1 only

*Highest adder
+C, = Carry-in = C;,, C, = Carry-out =C_;
*No C,,, or C;, = NO overflow!
What * C;, and C_,, = NO overflow!
op?(~C,, butno C,, = A,B both > 0, overflow!
[- C,ut but no C;, = A,B both <0, overflow!]

@ CSB1CL L09 Single Cycle CPU Design (57)

Huddleston, Summer 2009 © UCB

Datapath Walkthroughs (2/3)

eslti $r3,%r1,17
« Stage 1: fetch this instruction, inc. PC

- Stage 2: decode to find it’s an s1ti, then
read register $r1

+ Stage 3: compare value retrieved in Stage 2
with the integer 17

- Stage 4: idle

- Stage 5: write the result of Stage 3 in
register $r3

@ CSB1CL L09 Single Cycle CPU Design (60)

Huddleston, Summer 2009 © UCB

Example: s1ti Instruction

o Teal]
S> P 2 alf<172
506 |1 S =
=5[] ¢ T £
gE o
imm
@ 17

A
U

sltir3, r1,17

ﬂ CS61CL L09 Single Cycle CPU Design (61)

Huddleston, Summer 2009 ® UCB

Clocking Methodology
Clk

« Storage elements clocked by same edge

* Being physical devices, flip-flops (FF) and
combinational logic have some delays
- Gates: delay from input change to output change

- Signals at FF D input must be stable before active clock
edge to allow signal to travel within the FF (set-up time),
and we have the usual clock-to-Q delay

« “Critical path” (longest path through logic)

@ determines length of clock period

GSB1CL L09 Single Cycle CPU Design (62) Huddleston, Summer 2009 © UCB

Critical Path (Load Instruction) =
Delay clock through PC (FFs) +
Instruction Memory’s Access Time +
Register File’s Access Time, +
ALU to Perform a 32-bit Add +

Data Memory Access Time +
Ideal Stable Time for Register File Write
Instruction Instructior
Memory 2T Ry Re (Assumes a fast controller)
Instruction 3]
A
Rw Ra Data
32 N2 Addr] fdeal
Register g al
File B Klemory
/‘\ Data b4
clk 2 In o

@ CSB1CL L09 Single Cycle CPU Design (63)

Huddleston, Summer 2009 © UCB

