CS61CL : Machine Structures

Lecture #8 — State Elements, Combinational Logic

2009-07-15

(d James Tu, TA (d contract between HW & SW
CS61CL LO8 State Elements, inational Logic (1) Tu, Summer 2009 © UCB CS61CL LO8 State Elements, inational Logic (2) Tu, Summer 2009 © UCB

What are “Machine Structures”?

Application (Netscape)
Operating
System

[assembler] (MacOS X)

I uction Set
Hardware ﬁrocessorlMemory 1/O system | Architecture
Datapath & Control

Digital Design
Circuit Design

Coordination of many /evels of abstraction

Software

ISA is an important abstraction level:

Synchronous Digital Systems

The hardware of a processor, such as the MIPS, is an
example of a Synchronous Digital System

Synchronous:

* Means all operations are coordinated by
a central clock.

- It keeps the “heartbeat” of the system!

Digital:
* Mean all values are represented by
discrete values

« Electrical signals are treated as 1’s and
0’s and grouped together to form words.

@ CS1CL L0 State Elements, Combinational Logic (4) Tu, Summer 2009 © UCB

Logic Design

* Next 2 weeks: we’ll study how a modern
processor is built; starting with basic
elements as building blocks.

¢ Why study hardware design?

» Understand capabilities and limitations of
hardware in general and processors in
particular.

» What processors can do fast and what they
can’t do fast (avoid slow things if you want your
code to run fast!)

- Background for more detailed hardware courses
(CS 150, CS 152, EE 192)

* There is just so much you can do with
processors. At some point you may need to

61C Levels of Representation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

High Level Language
Program (e.g., C)

Compiler W $t0, 0($2)
Assembly Language lw $t1, 4($2)
Program (e.g.,MIPS) sw $t1, 0

Assembler

Machine Language
Program (MIPS)

E$2
sw $t0, 4($2
0 100 0

1

Machine
Interpretation

RTgldni File

Hardware Architecture Description
(Logic, Logisim, etc.)

ALU

Architecture @
Implementation .

ELogic Circuit Description |

_, (Logisim, etc.) o)
=
CS61CL L0 State Elements, Combinational Logic (3) Tu, Summer 2009 @ UCB.

Signals and Waveforms: Clocks

Velige e T
hij\r\.(z\T | T- ?‘Zyk Ins
\ow) (0) ~ > time

I
«Signals

* When digital is only treated as 1 or 0

+Is transmitted over wires continuously

* Transmission is effectively instant

- Implies that any wire only contains 1 value
at a time

@ design your own custom hardware.

CS1CL L0 State Elements, Combinational Logic (5) Tu, Summer 2009 © UCB

@ CS1CL L0 State Elements, Combinational Logic (6) Tu, Summer 2009 © UCB

Signals and Waveforms
b bo
RN

adder drcuit

papapupiiy

Signals and Waveforms: Grouping

Yo Lo, o]0

Xz X2 X Xo
|
\ A ‘ @) |

[

1

¥ F e ()

A= los,a,,a.,0.]
B=(bs, b, b ,be]

o —s
Q) —

Signals and Waveforms: Circuit Delay
Gy —>

4
A A
q =
B
m
A —+—
a3 —s

IR
A ST
s e
‘1
c TG
|
I

@ CS1CL L0 State Elements, Combinational Logic (8) Tu, Summer 2009 © UCB

CS1CL L0 State Elements, Combinational Logic (7) Tu, Summer 2009 © UCB

@ —*‘ “-— adder ‘Pm?%m{‘mahj

CS1CL L0 State Elements, Combinational Logic (9) Tu, Summer 2009 © UCB

Type of Circuits

*Synchronous Digital Systems are made
up of two basic types of circuits:
« Combinational Logic (CL) circuits
« Our previous adder circuit is an example.
+ Output is a function of the inputs only.

+ Similar to a pure function in mathematics,
y = f(x). (No way to store information from
one invocation to the next. No side
effects)

« State Elements: circuits that store
information.

w CS61CL L0 State Elements, Combinational Logic (10) Tu, Summer 20090 UCB

Uses for State Elements

1. As a place to store values for some
indeterminate amount of time:

- Register files (like $1-$31 on the MIPS)
» Memory (caches, and main memory)

2. Help control the flow of information
between combinational logic blocks.

+ State elements are used to hold up the
movement of information at the inputs
to combinational logic blocks and
allow for orderly passage.

w CS1CL L08 State Elements, Combinational Logic (11) Tu, Summer 20090 UCB

Accumulator Example

Why do we need to control the flow of information?

Want: S=0;
for (i=0;i<n;i++)
S =8+ X;
Assume:
» Each X value is applied in succession,
one per cycle.
« After n cycles the sum is present on S

First try...Does this work?

\[+ S
el
Nope!

Reason #1... What is there to control the
next iteration of the ‘for’ loop?
Reason #2... How do we say: ‘s=0"?

Circuits with STATE (e.g., register)

IN\)U‘\'
n

o\)‘(?u'\'

LoAD

Ty ot

IS

D> REGISTER

(@1

! " O\;f?\f"

w CS1CL L0 State Elements, Combinational Logic (12) Tu, Summer 20090 UCB

w CS1CL L0 State Elements, Combinational Logic (13) Tu, Summer 20090 UCB

w CS1CL L0 State Elements, Combinational Logic (14) Tu, Summer 20090 UCB

Second try...How about this?

K <

vesek ——i Yeg \<tex 4 LOAD/ cLk.

fouah won L LWL L

oug .

timing... s B EA 2 T P
* e =~ Lx Y

w Register is used to hold up the transfer of data to adder.

CS1CL L0 State Elements, Combinational Logic (15) Tu, Summer 20090 UCB

Register Details...What’s inside?

dne A 6
P By

n q{n—l qn-a 9

CLK

1l

D
Reg wster
Q

* n instances of a “Flip-Flop”

* Flip-flop name because the output flips and
flops between and 0,1

*Dis “data”, Q is “output”
« Also called “d-type Flip-Flop”

What’s the timing of a Flip-flop? (1/2)
« Edge-triggered d-type flip-flop j
* This one is “positive edge-triggered”
« “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
all other times, the input d is ignored.”

« Example waveforms:)
S o 0 o U U o B
e
| |
o 770 L

w CS1CL L0 State Elements, Combinational Logic (17) Tu, Summer 2009 0 UCB

What’s the timing of a Flip-flop? (2/2)
« Edge-triggered d-type flip-flop j
* This one is “positive edge-triggered”

* “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
all other times, the input d is ignored.”

« Example waveforms (more detail):

S wpot data rmuct be stable
e < 1\\}:*\\; Y-e?ﬁ& < AN
— e Nsetup! Hime i
& ‘f/

O LS i
I
a, — —— “clk-to-q) Admj

CS61CL L0 State Elements, Combinational Logic (16) Tu, Summer 20090 UCB

@ CSB1CL L0 State Elements,

onal Logic (18) Tu, Summer 2009 © uCB

Sample Debugging Waveform

Ele Edt Cuser Zoom Bookmark Formst Uindon
SHE | ¥ BB | DF *A | QQQAB | [
“ /tb/DBG_00[10]

2 /tb/DBG_00[5]
21 /tb/DBG_00[4]
) /tb/DBG_00[3]
) /th/DBG_00[21
2 /tb/DBG_00[11
2 /tb/DBG_00[0]

=) /th/A

=2, /th/IB.

@2 /tb/ROMAD

&< /th/D
=) /tb/TState
/tb/0E_n

| 6586540 02 o 111169300 5=

T K
@ CS61CL L0 State Elements, Combinational Logic (19) Tu, Summer 2009 © UCB

Recap of Timing Terms

* Clock (CLK) - steady square wave that
synchronizes system

* Setup Time - when the ian must be stable before
the rising edge of the CL|

« Hold Time - when the input must be stable after the
rising edge of the CLK

* “CLK-to-Q” Delay - how long it takes the output to
change, measured from the rising edge

« Flip-flop - one bit of state that samples every rising
edge of the CLK

* Register - several bits of state that samples on
rising edge of CLK or on LOAD

@ CS1CL L0 State Elements, Combinational Logic (20) Tu, Summer 2009 © UCB

Finite State Machines (FSM) Introduction

* You have seen FSMs
in other classes.

» Same basic idea.

« The function can be
represented with a
“state transition
diagram”.

» With combinational
logic and registers,
any FSM can be
implemented in
hardware.

w CS1CL L0 State Elements, Combinational Logic (21) Tu, Summer 2009 © UCB

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

SOOI o U o GRN g N G U
Draw the FSM... _ o/, A

Assume state transitions are controlled by the clock:
on each clock cycle the machine checks the inputs and moves
@ to a new state and produces a new output...

CS1CL L0 State Elements, Combinational Logic (22) Tu, Summer 2009 © UCB

Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

) ‘ EFUME S
SN

> OUTPUT
precedt (¢)
Stde S stk
TupT

Combinational logic circuit is

used to implement a function —_— ~
maps from present state and OuTPUT
input to next state and output. s d—cix

@ CS1CL L0 State Elements, Combinational Logic (23) Tu, Summer 2009 © UCB

Hardware for FSM: Combinational Logic

Later in today’s lecture, we will discuss the detailed
implementation, but for now can look at its functional
specification, truth table form.

< Truth table...
ot v

PS | Input | NS | Output

00| o |oo 0

00| 1 [ot 0

r o1 o |oo 0

> OUTPUT o1 1 |10 0

ver¥ (o 10 0 00 0

gl) 10 1 |00 1

w CS1CL L0 State Elements, Combinational Logic (24) Tu, Summer 2009 © UCB

Maximum Clock Frequency

Inputs Outguts
Combinational

*What is the maximum frequency of
this circuit?

Max Delay =Setup Time + CLK-to-Q Delay
+ CL Delay

@ CS1CL L0 State Elements, Combinational Logic (25) Tu, Summer 2009 © UCB

General Model for Synchronous Systems

clock _ILIM | input

input cL reg| cL reg p output
—)
L I

‘ option feedback

¥ output

« Collection of CL blocks separated by registers.

. tF)ie%isters may be back-to-back and CL blocks may be back-to-
ack.

« Feedback is optional.
« Clock signal(s) conn)ects only to clock input of registers. (NEVER

put it through a gate
@ CS61CL LO8 State Elements, inational Logic (26) Tu, Summer 2009 © UCB

Administrivia

*Project 2 due Friday @ 11:59 PM
*Midterm 7/20 (Monday) in class

w CS61CL L0 State Elements, Combinational Logic (27) Tu, Summer 2009 © UCB

Combinational Logic

Truth Tables

TT Example #1: 1 iff one (not both) a,b=1

- - O O
o—n—no"<

- O = O

@ CSB1CL L0 State Elements, ional Logic (30)

Tu, Summer 2009 © UCB

a b c d|y
*FSMs had states and transitions g g 8 <1> 15888(1);
*How ',to we get from one state to the R, 8 8 } (1> Eggg}?;
next? a 0 1 0 0F0,100
« Answer: Combinational Logic b 0 1 0 1]FOLOL
clock _IM Iinput F ~——b‘3 0 1 1 0|FO0.LLO)
C 0o 1 1 1|FQ,L,1,)
L ’ 1 0 0 0]F1000)
) oL — 1 0 0 1]|F1001)
input cL req cL reg p output 1 0 1 0|F10,10)
= o 1 0 1 1|F10,1,D)
P f 11 0 0|F1,100)
option feedback i } (1) (1) 1}281(1)(1);
@ ¥ output @ 11 1 1| F1LLLD
CS61CL L08 State Elements, tional Logic (28) Tu, Summer 2009 © UCB. CS61CL L08 State Elements, tional Logic (29) Tu, Summer 2009 © UCB
Logic Gates (1/2) And vs. Or review — Dan’s mnemonic
ab | ¢
(o8 | ¢)
> j)__ . oo AND G: te
AND 0110 Symbol Definition
100
11 A
ac ab ¢ B AN c A B C
D B :
OR 01 |1
10 | 1
1111 8

NOT

@ CSB1CL L0 State Elements, ional Logic (31)

Tu, Summer 2009 © UCB

- -0 0O
—_ O -0

@ CSB1CL L0 State Elements, ional Logic (32)

Tu, Summer 2009 © UCB

Logic Gates (2/2)
T
C 00
xom O :) 01
10

o —] ab
b _DD—\ ol 00
NAND 01

10
11

a ab

b m C 00

NOR 01
10

@ CSB1CL L0 State Elements, ional Logic (33)

OOO»—“O O>—‘>—‘>—*|O OHHO‘O

Tu, Summer 2009 © UCB

|

2-input gates extend to n-inputs

* N-input XOR is the

only one which isn’t
so obvious

¢It’s simple: XOR is a

1 iff the # of 1s at its
input is odd=

@ CSB1CL L0 State Elements, ional Logic (34)

a b cly
0 0 0|0
0O 0 1]1
0 1 01
0 1 1]0
1 0 01
1 0 1]0
1 1 0]0
1 1 111

Tu, Summer 2009 © UCB

Truth Table = Gates (e.g., majority circ.)

a b cly

0 0 010

0 0 110

0 1 010 &

0 1 11 N

1 0 00 Y
1 0 111 C

1 1 01

1 1 171

S coiot 100 st toments, combinatons J 55

Tu, Summer 2009 © UCB

Boolean Algebra

»George Bqole, 19t Century
mathematician

*Developed a mathematical
Isggsitgm (algebra) involving

« later known as “Boolean Algebra” . &
¢ Primitive functions: AND, OR and NOT

*The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA

ﬂ + means OR,- means AND, X means NOT

CSB1CL L0 State Elements, ional Logic (36) Tu, Summer 2009 © UCB

Laws of Boolean Algebra

z-T=0 r+z=1 complementarity
z-0=0 z+1=1 laws of 0’s and 1’s
z-l=z r+0=z identities
T-T==1T T+zr==1I @ idempotent law
T-y=y-zx rt+y=y+z commutativity

(zy)z = z(y2) (z+y)+z=z+(y+2) associativity

ac

)

Boolean Algebra (e.g., for majority fun.)

BA: Circuit & Algebraic Simplification

iﬂDL

C

y=

D—y

1
((ab) +a) + ¢
1
b+a+c

=a
=ab+1)+c

@
C

=a(l)+c
=a-+c
!

Dy

M CSG1CL L0 State Elements, Combinational Logic (39)

original circuit

equation derived from original circuit
algebraic simplification

BA also great for
circuit verification
Circ X =Circ Y?
use BA to prove!

simplified circuit

z(y+z)=zy+zz z+yz=(r+y)(zx+z) distribution C
zy+zr==zx (z+yz=12 uniting theorem
Ty=T+Yy (z+y) =73y DeMorgan’s Law
y=a*b+a‘c+b-c
(d (d y=ab +ac + bc
Boolean Algebraic Simplification Example Canonical formj (1/2)
abe | y Sum-of-products
a-b-¢ 0001 (ORs of ANDs)
y =abt+a+c a-b-c 0011 -
=a(b+ 1) + ¢ distribution, identity 010 | 0 ' = abe + abe + abe + abe
_ s 011 |0
=a(l)+c l.awofls WB.z 1001
=a+c identity 101 1] 0
a-b-c 110 |1
111 |0

Canonical forms (2/2)

Yy =

CS61CL L08

ab
ab(c+c) +ac(b+0b) distribution
ab

:mlé = kalD-g
&C‘-D“—"—Dj —<>D‘r

State Elements, Combinational Logic (42)

complementarity
identity

Review

« Use this table and techniques we

@ CSE1CL L08 State Elements, Combinational Logic (43)

learned to transform from 1 to another

A
3

w CSB1CL L0 State Elements,

Data Multiplexor (here 2-to-1, n-bit-wide)

v\ “mux”

S

donal Logic (44) Tu, Summer 2009 © uCB

N instances of 1-bit-wide mux

a.———-qo

o
I
IS

[
N

| @ » ®»

Il
w
Q
+
»
>

CSB1CL L08

| Jp—
S

b+ 3Sab + sab + sab
ab + ab) + s(ab + ab)
a(b+0b)) + s((@+ a)b)
(a(1) +s((1)d)

State Elements, Combinational Logic (45)

How many rows in TT?

c

sa + sb

s

@ CSB1CL L0 State Elements, ional Logic (46)

How do we build a 1-bit-wide mux?

Tu, Summer 2009 © UCB

4-to-1 Multiplexor?
How many rows in TT?
a b cd
LU
00 ©\ 10 |1
§= $\So
€

2 e = 515pa + S180b + s159c + s1S0d

Do you really understand NORs?
«If one input is 1, what is a NOR?

«If one input is 0, what is a NOR?
B NOR

~~=OOoOUMw

= O = O

oOooOR
|

o

@ CSB1CL L0 State Elements, ional Logic (49)

NOR
A| NOR
0| B’
A 110

Tu, Summer 2009 © UCB

Do you really understand NANDs?
«If one input is 1, what is a NAND?
«If one input is 0, what is a NAND?

B NAND A :D
O— NAND
1 B
1
3 NAND
A|NAND
o] 1

@ CS61CL L0 State Elements, onal Logic (50) Tu, Summer 2009 © UCB

~~=OOoOMw
= O = O
—

|

Our simple ALU

A B
324 32

S —1 addfsultract L AND
22
overd lowy

32 ©

@ CSB1CL L0 State Elements, ional Logic (52)

Tu, Summer 2009 © UCB

Conclusion

<ISA is very important abstraction layer
« Contract between HW and SW

«Clocks control pulse of our circuits
+Voltages are analog, quantized to 0/1
« Circuit delays are fact of life

*Two types of circuits:
- Stateless Combinational Logic (&,l,~)
- State circuits (e.g., registers)

Is there any other way to do it?

o Hint: March Madness
b 0
e
|
<R
|

d\—@ 5

So Ans: Hierarchically!

Q CSE1CLL08 Siato Eloments, Combinationl Logic (49)

Tu, Summer 2009 © UCB

Arithmetic and Logic Unit

*Most Brocessors contain a special
logic block called “Arithmetic and
Logic Unit” (ALU)

*We’ll show gou an easy one that does

ADD, SUB, bitwise AND, bitwise OR
A B
32 22

[when S=00, R=A+B
w < when S=01, R=A-B
b when S=10, R=A AND B
2 when S=11, R=A or B

g R
CSS1CL LB State Elements, jonal Logic (51)

Tu, Summer 2009 © UCB

@ CSB1CL L0 State Elements, ional Logic (53)

Tu, Summer 2009 © UCB

Conclusion

« State elements are used to:
* Build memories

« Control the flow of information between other state
elements and combinational logic

 D-flip-flops used to build registers

* Clocks tell us when D-flip-flops change
« Setup and Hold times important

* Finite State Machines extremely useful

@ CSB1CL L0 State Elements, ional Logic (54)

Tu, Summer 2009 © UCB

Conclusion

*Pipeline big-delay CL for faster clock

+Finite State Machines extremely useful
*You’ll see them again in 150, 152 & 164

«Use this table and techniques we
learned to transform from 1 to another

am_
Exprecs

@ CS1CL L0 State Elements, Combinational Logic (55) Tu, Summer 2009 © UCB

Conclusion

*Use muxes to select among input
- S input bits selects 25 inputs
+ Each input can be n-bits wide, indep of S

« Can implement muxes hierarchically

¢ ALU can be implemented using a mux
+ Coupled with basic block elements

@ CS61CL L0 State Elements, Combinational Logic (56) Tu, Summer 2009 © UCB

Bonus slides

*These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

*The slides will appear in the order they
would have in the normal presentation

) A
. Bonus

CS1CL L0 State Elements, Combinational Logic (57) Tu, Summer 2009 © UCB

Transistors 101

Transistor Circuit Rep. vs. Block diagram

* Chips is composed of nothing but
* MOSFET D S transistors and wires.
« Metal-Oxide-Semiconductor .
Field-Effect Transistor * Small groups of transistors form useful
. G— G building blocks.
« Come in two types:
- n-type NMOSFET “1” (voltage source)
- p-type PMOSFET S D a bl c
o b
« For n-type (p-type opposite) n-type p-type # b . 0 0] 1

- If voltage not enough between G & S, sowee " o “ < = c 0 1] 1
transistor turns “off” (cut-off) — S 1 0l 1
and Drain-Source NOT connected C | . “

- If the G & S voltage is high enough, B l 11 0
transistor turns “on” (saturation) > Body “0” rQung). . .
and Drain-Source ARE connected N B_Iock are organized’n a hlerarchy to build

higher-level blocks: ex: adders.
www.wikipedia.org/wiki/Mosfet
CS61CL L08 State Elements, inational Logic (58) Tu, Summer 2009 © UCB CS61CL LO8 State Elements, inational Logic (59) Tu, Summer 2009 © UCB

Accumulator Revisited (proper timing 1/2)

Ki * Reset input to register is
used to force it to all
zeros (takes priority over
D input).

* S;; holds the result of the
it"-1 iteration.

« Analyze circuit timing
starting at the output of
the register.

T s e s R g U s e 2 o o e e
= =l

St Do [T)

ST o e Ty

< 7 €S G S

@ CS1CL L0 State Elements, Combinational Logic (60) Tu, Summer 2009 © UCB

Accumulator Revisited (proper timing 2/2)

X « reset signal shown.

« Also, in practice X might
not arrive to the adder at
the same time as S,

« S, temporarily is wrong,
but register always
captures correct value.

+ In good circuits,

instability never happens
around rising edge of clk.

B e e —— ‘
| 1 ~
VPR N s Y 8 o S o W o Y i B R
SR 7 S o .. s s S [A
% |

Si ke Dotk Pl T

CS1CL L0 State Elements, Combinational Logic (61) Tu, Summer 2009 © UCB

Pipelining to improve performance (1/2)

Extra Register are often added to help
speed up the clock rate.

“npots Timing...

i 1

impts 70 (G0 [o

|

Ri R é . 3] [T
— le— add/shigt prp, d@lmj
I
Ri-y Ri-e (O J G

Note: delay of 1 clock cycle from input to output.
@ Clock period limited by propagation delay of adder/shifter.

CS1CL L0 State Elements, Combinational Logic (62) Tu, Summer 2009 © UCB

Pipelining to improve performance (2/2)

« Insertion of register allows higher clock
frequency.

< wpots « More outputs per second. Tlmlng .

o e JULULUUL

Tea 2
gl R
NE
Shidter
> Ri So (O -(uﬁ (2 -(Lf]\
ra(v;l (g <tar
< Ri-i| Sin

3 &
ﬂ R tn | f
CSB1CL L0 State Elements, Combinational Logic (63) Tu, Summer 2000 © UCB

TT Example #2: 2-bit adder

TT Example #3: 32-bit unsigned adder

A B |C
A B ajag biby | cacicp A B ‘ C

T 00 00 | 000

oo 000...0 000 ...0 [000 ... 00
o 00 |01 000...0 000..1 |000..01
01 01 |010

01 10 | o011

01 11 | 100 How How
10 oo o0 Many Many
10 01 | 011

10 10 | 100 Rows? Rows?
10 11 |101

11 00 |o011

1 o1 | 100 111...1 111..1 | 111...10

C, 11 10 | 101
@ CS61CL L08 State Elements, inational Logic (64) 11 11 110 Tu, Summer 2009 © UCB @cs«cuns State Elements, inational Logic (65) Tu, Summer 2009 © UCB

TT Example #3: 3-input majority circuit
a b cly
0|0

—t ek e em O O O O
—_—0 O = = O O

—_ O = O = O ==
—_—= = O = OO

@ CSE1CL L0 State Elements, Combinational Logic (66)

|

Truth Table = Gates (e.g., FSM circ.)

@ CSE1CL L0 State Elements, Combinational LI (67)

PS | Input | NS | Output PSL

0| 0 |00| o PSo *—DO——} OLTPUT

00| 1 |ol 0 TweuT

o1 0 |00| o .

o1 1 [10] o or equivalently...

10 0 (00| O Py

0] 1 9 ! PSo %)._ ouLTPUT
npuT

Boolean Algebi(e.g., for FSM)

PS | Input | NS | Output PS‘L

0| 0 |00| o PSo *—\)O——} OLTPUT
0] 1 (01| o TweuT

o1 o0 |00| o .

o1 1 |[10] o or equivalently...

10 0 (00| O P,

10 1 (00| 1

@ CSE1CL L0 State Elements, Combinational Lpgic (68)

PSo %—D_ ouTPUT
znpuT

y =PS§ PS, - INPUT

Adder/Subtracter Design -- how?

* Truth-table, then
determine canonical
form, then minimize
and implement as
we’ve seen before

* Look at breaking the
problem down into
smaller pieces that
we can cascade or
hierarchically layer

@ CSE1CL L0 State Elements, Combinational Logic (69)

Adder/Subtracter — One-bit adder LSB...

Adder/Subtracter — One-bit adder (1/2)...

8 by ¢ |s ¢
% bol% o o0 1|1 o
a a a a
b3b2b1b0 0 0100 az a4 | a1 | a 01 0[1 0
+ bg by by | by 0 1|1 O + bs by |b;|by 0 1 1]0 1
83 S2 81| So 1 0 1 0 S3 So | S1|Sp 1 0 0|1 0
1 170 1 — 1 0 1[0 1
1 1 010 1
50— 11 1)1 1
Cp =
S; =
Ciy1 =
@cs«cuns State Elements, inational Logic (70) Tu, Summer 2009 © UCB @cs«cuns State Elements, inational Logic (71) Tu, Summer 2000 © UCB.

Adder/Subtracter — One-bit adder (2/2)...
aL
b —’—Db Se
s =D
a;

b Cit

aQ

S = XOR(ai, bi, Cl')
Ciy1 = MAI(a;, by, ¢;) = a;b; + a;c; + bic;

@ CSE1CL L08 State Elements, Combinational Logic (72)

Tu, Summer 20090 © UCB

N 1-bit adders = 1 N-bit adder

What about overflow?
* Consider a 2-bit signed # & overflow:

What about overflow?

«Consider i 2-bit signed # & overflow:

b a, & Qo

10 = -2 + -2 or -1
11 = -1 + -2 only
00 = 0 JOTHING!
0l= 1 +1only &

<
=
=k

when... S Se

-C

out’

*Cin, but nc C,,, = A,B both > 0, overflow!
but no C;, = A,B both < 0, overflow!

overflow = ¢,, XOR ¢,,_1

*10 = -2 + -2 or -1
bn-1 dn-1 b a, by ao *11 = -1 + -2 only
- «00 = 0 NOTHING!
*01l = 1 + 1 only
. s e o Co +Highest adder
+Cy=Carry-in=C;, C, = .2, vl Py
o 2 s *No C,,; or C;, = NO overflow!
' ° What.~.Cim @1d Cou = NO overflow!
a
What about overflow? op? [C.., but no C_,, = A,B both > 0, overflow!
Overflow =c¢,? * Cou» but no C,, = A,B both < 0, overflow!
@ CS61CL L08 State Elements, Logic (73) Tu, Summer 2009 © UCB. @ CS61CL L08 State Elements, Logic (74) Tu, Summer 2009 © UCB
Extremely Clever Subtractor
bt lany b 4 be do
Cn Ch-t X C:_j C Co SUB
Sh—‘ S\ Se
overflow

@ CSB1CL L0 State Elements,

Logic (76)

Tu, Summer 2009 © UCB

@ CSB1CL L0 State Elements,

Logic (75)

Tu, Summer 2009 © UCB

