inst.eecs.berkeley.edu/~cs61c
CS61CL : Machine Structures
Lecture \#6 - Number Representation, IEEE FP

68 Hut Mudeston, Summer 2009ever

What to do with representations of numbers?

- Just what we do with numbers!
- Add them 11
- Subtract them 10010
- Multiply them $\quad+\quad 0 \quad 1 \quad 11$
- Divide them

Compar

- Example: $10+7=17 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1$ -..so simple to add in binary that we can build circuits to do it!
- subtraction just as you would in decimal
- Comparison: How do you tell if $X>Y$?

Cal \qquad

Review: Decimal (base 10) Numbers

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example

3271 =

$$
\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(1 \times 10^{0}\right)
$$

Cal \qquad

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
- Terrible for arithmetic on paper
- Binary: what computers use;
you will learn how computers do +, -, *, /
- To a computer, numbers always binary
- Regardless of how number is written:
- $32_{\text {ten }}=32_{10}==0 \times 20==100000_{2}==0 b 100000$
- Use subscripts "ten", "hex", "two" in book, slides when might be confusing
slides when might

Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
- Special steps depending whether signs are the same or not
- Also, two zeros
- $0 \times 00000000=+0_{\text {ten }}$
- $0 \times 80000000=-0_{\text {ten }}$
- What would two 0s mean for programming?
- Therefore sign and magnitude abandoned

Cel
C56icl Loo Number Reprosesenation, FFoating Poin(8) Hucdileson, Summor 2009 © UCB

Review: Hexadecimal (base 16) Numbers

- Hexadecimal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Normal digits + 6 more from the alphabet
- In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary \Leftrightarrow Hex
- 1 hex digit represents 16 decimal values
- 4 binary digits represent 16 decimal values
$\Rightarrow 1$ hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
$\cdot 2$ bits is a "half-nibble". Shave and a haircut...
- Example:

Ced

- 101011000011 (binary) = 0x ?
Cssicl L Los Number Roperesenataion, Footing Point(3)

BIG IDEA: Bits can represent anything!!

- Characters?

- 26 letters $\Rightarrow 5$ bits $\left(2^{5}=32\right)$
- upper/lower case + punctuation
7 bits (in 8) ("ASCII") $\Rightarrow 7$ bits (in 8) ("ASCII")
- standard code to cover all the world's www.unicode.com
- Logical values?
- $0 \Rightarrow$ False, $1 \Rightarrow$ True
- colors ? Ex: Red (00) Green (01) Blue(11)
- locations / addresses? commands?
- MEMORIZE: N bits \Leftrightarrow at most 2^{N} things

68 \qquad
\qquad

How to Represent Negative Numbers?

- So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign! $-0 \Rightarrow+, 1 \Rightarrow-$
- Rest of bits can be numerical value of number
- Representation called sign and magnitude
- MIPS uses 32 -bit integers. $+1_{\text {ten }}$ would be: 00000000000000000000000000000001
- And $-1_{\text {ten }}$ in sign and magnitude would be: 10000000000000000000000000000001
Cal \qquad Huddososon, Summer 2098 oucb

Shortcomings of One's complement?

- Arithmetic still a somewhat complicated.
- Still two zeros
- $0 \times 00000000=+0_{\text {ten }}$
- $0 \times$ xFFFFFFF $=-0_{\text {ten }}$
- Although used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.
\qquad IUddesoson. Summer 200e © ucB

Two's Complement Formula

- Can represent positive and negative numbers in terms of the bit value times a power of 2:
$d_{31} \times-\left(2^{31}\right)+d_{30} \times 2^{30}+\ldots+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}$
- Example: $1101_{\text {two }}$
$=1 \mathrm{x}-\left(2^{3}\right)+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=-2^{3}+2^{2}+0+2^{0}$
$=-8+4+0+1$
$=-8+5$
$=-3_{\text {ten }}$
Cal Hucticl Loo sumber Reporsesmation, Floating Point(13) Hustoson, Summer 2009 © uce

What about other numbers?

1. Very large numbers? (seconds/millennium) $\Rightarrow 31,556,926,000_{10}\left(3.1556926_{10} \times 10^{10}\right)$
2. Very small numbers? (Bohr radius) $\Rightarrow 0.0000000000529177_{10} \mathrm{~m}\left(5.29177_{10} \times 10^{-11}\right)$
3. Numbers with both integer \& fractional parts? $\Rightarrow 1.5$

First consider \#3.
...our solution will also help with 1 and 2.

Standard Negative Number Representation

- What is result for unsigned numbers if tried
o subtract large number from a smail one?
- Would try to borrow from string of leading 0s,
so result would have a string of leading 1 s

$$
3-4 \Rightarrow 00 \ldots . .0011-00 \ldots 0100=11 \ldots 1111
$$

- With no obvious better alternative, pick
representation that made the hardware simple
- As with sign and magnitude
leading $0 \mathrm{~s} \Rightarrow$ positive, leading $1 \mathrm{~s} \Rightarrow$ negative 000000...xxx is $\geq 0,111111 \ldots x x$ is <0 except $1 . . .1111$ is -1 , not -0 (as in sign \& mag.)
-This representation is Two's Complement 68 Huddoseson, Summor 20098 © CCB

Two's Complement shortcut: Negation Check out www.cs.berkeley.edu/~dsw/twos_complement. html - Change every 0 to 1 and 1 to 0 (invert or complement), then add 1 to the result

- Proof*: Sum of number and its (one's) - Pomplement must be 111...111 two

However, 111...111 $1_{\text {two }}=-1_{\text {ten }}$
Let $x^{\prime} \Rightarrow$ one's complement representation of x
Then $x+x^{\prime}=-1 \Rightarrow x+x^{\prime}+1=0 \Rightarrow-x=x^{\prime}+1$

- Example: -3 to +3 to -3
\mathbf{x} : $11111111111111111111111111111101^{\text {two }}$ x, $00000000000000000000000000000010^{\text {tw }}$ 1: $000000000000000000000000000000011_{\text {two }}$ $)^{\prime}: 11111111111111111111111111111100_{\text {two }}$: You should be able to do this in your head...

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts

\[

\]

$10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=\mathbf{2 . 6 2 5}_{10}$
If we assume "fixed binary point", range of 6-bit representations with this format:

0 to 3.9375 (almost 4)

What if too big?

- Binary bit patterns above are simply representatives of numbers. Strictly speaking
they are called "numerals".
- Numbers really have an ∞ number of digits
- with almost all being same ($00 . . .0$ or $11 \ldots 1$) excep
for a few of the rightmost digits
- Just don't normally show leading digits
- If result of add (or -, *, I) cannot be represented by these' rightmost HW bits, overflow is said to have occurred.

Fractional Powers of 2

i	$\mathbf{2}^{-\mathbf{i}}$	
0	1.0	1
1	0.5	$1 / 2$
2	0.25	$1 / 4$
3	0.125	$1 / 8$
4	0.0625	$1 / 16$
5	0.03125	$1 / 32$
6	0.015625	
7	0.0078125	
8	0.0039625	
9	0.001953125	
10	0.0009765625	
11	0.00048828125	
12	0.000244140625	
13	0.0001220703125	
14	0.000066103515625	
15	0.000030517578125	

68

Representation of Fractions with Fixed Pt.

What about addition and multiplication?

> Addition is $\quad \begin{array}{ll}01.100 & 1.510 \\ 00.100 & 0.5\end{array}$
> straightforward: $\begin{array}{lll}\frac{00.100}{10.000} & 0.55_{10} \\ 2.010\end{array}$

$$
\begin{array}{ll}
01.100 & 1.5_{10} \\
00.100 & 0.5_{10}
\end{array}
$$ $00.100 \quad 0.5_{10}$

Multiplication a bit more complex: 00000
000
00000
00000
$\underbrace{0}_{\underbrace{00001} \underbrace{0000}}$

Where's the answer, 0.11 ? (need to remember where point is) Cssicl Loo Number Reoresesenation, Fioating Pointue \qquad

Scientific Notation (in Binary)

- Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers
- Declare such variable in C as float

6

Double Precision FI. Pt. Representation

- Next Multiple of Word Size (64 bits)

2019		
S	Exponent	Significand
1 bit	11 bits	20 bits
Significand (cont'd)		
32 bits		

- Double Precision (vs. Single Precision)

- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308} - But primary advantage is greater accuracy due to larger significand

Representation of Fractions

So far, in our examples we used a "fixed" binary point what we really want is to "float" the binary point. Why? Floating binary point most effective use of our limited bits (and
thus more accuracy in our number representation):
example: put 0.1640625 into binary. Represent as in -bits choosing where to put the binary point. $000000.00 \underbrace{01010100000 . .}$
Store these bits and keep track of the binary point 2 places to the left of the MSB

Any other solution would lose accuracy!
With floating point rep., each numeral carries a exponent field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very large and small numbers can be represented.
C. \qquad
\qquad

Floating Point Representation (1/2)

- Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}{ }^{*} 2^{y_{y y y}^{t w o}}{ }_{\text {two }}$
- Multiple of Word Size (32 bits)

3130		
S	Exponent	
	Significand	

- S represents Sign

Exponent represents y's
Significand represents x's

- Represent numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
-IEEE 754-2008, Finalized Aug 2008
- 15 exponent bits
- 112 significand bits (113 precision bits)

- Oct-Precision?

- Some have tried, no real traction so far
- Half-Precision?
- Yep, that's for a short (16 bit)
en.wikipedia.org/wiki/Quad_precision

Scientific Notation (in Decimal)

```
mantissa
```

- Normalized form: no leadings 0 s
(exactly one digit to left of decimal point)
- Alternatives to representing $1 / 1,000,000,000$
- Normalized:
1.0×10^{-9}
- Not normalized: $\quad 0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

68 \qquad

Floating Point Representation (2/2)

- What if result too large?
(> $2.0 \times 10^{38},<-2.0 \times 10^{38}$)
Overflow! \Rightarrow Exponent larger than represented in 8bit Exponent field
- What if result too small?
($>0 \&<2.0 \times 10^{-38}$, <0 \& >-2.0×10 0^{-38})
Underflow! \Rightarrow Negative exponent larger than represented in 8-bit Exponent field

$$
\underset{-2 \times 10^{38}}{\stackrel{\text { overflow }}{\$}}
$$

- What would help reduce chances of overflow and/or underflow?

IEEE 754 Floating Point Standard (1/3)

Single Precision (DP similar):

- Significand:
- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
always true: $0<$ Significand < 1
(for normalized numbers)
- Note: reserve exponent value 0 to mean no

IEEE 754 Floating Point Standard (2/3)

- IEEE 754 uses "biased exponent" representation.
- Designers wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Wanted bigger (integer) exponent field to represent bigger numbers.
-2's complement poses a problem (because negative numbers look bigger)
- We're going to see that the numbers are ordered EXACTLY as in sign-magnitude
l.e., counting from binary odometer $00 . . .00$ up to 11... 11 goes from 0 to +MAX to -0 to -MAX to 0 Huddeston, Summer 2009 evce

IEEE 754 Floating Point Standard (3/3)

- Called Biased Notation, where bias is number subtracted to get real number
- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision

${ }_{-3130}^{\text {- Summary (single precision): }}$	
S Exponent	Significand
1 bit 8 bits	23 bits
$(-1)^{\text {S }} \times(1$	nd) $\times 2^{\text {(Expor }}$

$$
\text { -(-1) }{ }^{\text {S }} \times\left(1+\text { Significand) } \times 2^{\text {(Exponent-127) }}\right.
$$

Cul Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $\mathbf{0 . 3 4 0}_{10}$
$\Rightarrow 340_{10} / 1000$
$\Rightarrow 34_{10} /{ }^{100} 0_{10}$
- In binary: $0.110_{2} \Rightarrow 110_{2} / 1000_{2}=6_{10} / 8_{10}$

$$
\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}
$$

- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Cal

Example: Converting Binary FP to Decimal

0	01101000	10101010100001101000010

- Sign: 0 = pos itive
- Exponent:/
.01101000
- $01101000_{\text {two }}=104_{\text {ten }}$
- Significand
$1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots$
$=1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$
$=1.0+0.666115$
- Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$

Cal
(about 2/10,000,000)

Understanding the Significand (2/2)

- Method 2 (Place Values):
- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers
Cal \qquad

Precision and Accuracy

Precision is a count of the number bits used to represent a value.
Accuracy is a measure of the difference between the actual value of a number and its computer representation.

High precision permits high accuracy but doesnt
guarante it.
ti s osssilite to guarante it. It it sus sibiba to have
but low accuracy.

Example: float pi $=3.14159$. will be represented using all
nificepresented using all 24 bits of the approximation (not accurate).

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., $\mathrm{X} / 0$ > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Representation for 0

- Represent 0?
- exponent all zeroes
- significand all zeroes
- What about sign? Both cases valid.

40: 00000000000000000000000000000000
-0: 10000000000000000000000000000000

Special Numbers

-What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	???
$1-254$	anything	$+/-$ fl. pt. $\#$
255	0	$+/-\infty$
255	nonzero	$? ? ?$

- "Waste not, want not"
- We'll talk about Exp=0,255 \& Sig!=0 later

68 \qquad

Representation for Denorms (2/2)

- Solution:
- We still haven't used Exponent=0,

Significand nonzero

- Denormalized number: no (implied)
leading 1, implicit exponent $=-126$
- Smallest representable pos num: - A = 2^{-149}
- Second smallest representable pos num: - $\mathrm{b}=\mathbf{2}^{-148}$

$$
-\infty \underset{0}{-\infty}+\infty
$$

Cal IUddesoso, Summer 200es ucB

IEEE FP Rounding Modes

Examples in decimal (but, of course, IEEE754 in binary)

- Round towards $+\infty$

ALWAYS round "up": $2.001 \rightarrow 3,-2.001 \rightarrow-2$

- Round towards - ∞
- ALWAYS round "down": $1.999 \rightarrow 1,-1.999 \rightarrow-2$
- Truncate

Just drop the last bits (round towards 0)

- Unbiased (default mode). Midway? Round to even
- Normal rounding, almost: $2.4 \rightarrow 2,2.6 \rightarrow 3,2.5 \rightarrow 2,3.5 \rightarrow 4$ Round like you learned in grade school (nearest int)
Except if the value is right on the borderline, in which case we round o the nearest EVEN number
Insures fairness on calculation
This way, half the time we round up on tie, the other half time we
round down. Tends to balance out inaccuracies
CS64CLLO6 Number feprosesenataon, Fioating Poonn(43) Huddesson, Summer 2009 © UCB

Representation for Not a Number

- What do I get if I calculate

sqrt (-4.0) or 0/0?

- If ∞ not an error, these shouldn't be either
- Called Not a Number (NaN)

Exponent = all 1s (255),

- Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

68
 \qquad

Special Numbers Summary

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	$+/-0$
0	nonzero	$+/-$ Denorm
$1-254$	anything	$+/-$ Norm
255	0	$+/-\infty$
255	nonzero	NaN

Ce8 \qquad

"And in conclusion..."

- Floating Point lets us:

Represent numbers containing both integer and fractiona
parts; makes efficient use of available bits.

- Store approximate values for very large and very small \#s.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such since ~ 1997 follows these conventions)

\section*{3130 Summary (single precision):
 3130
 | S | Exponent | Significand |
| :--- | :--- | :--- |
 1 bit 8 bits
 23 bits}

$\bullet(-1)^{S} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$

- Double precision identical, except with Cel exponent bias of 1023 (half, quad similar)

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:
$\begin{aligned} b & =1.000 \ldots \ldots 1_{2}{ }^{*} 2^{-126} \\ & =\left(1+0.00 \ldots 1_{2}\right)^{*} 2^{-126}\end{aligned}$
Normalization and $=\left(1+2^{-23}\right) * 2^{-126}$ $=2^{-126}+2^{-149} \quad$ is to blame
$a-0=2^{-126}$ $-\infty \cdot \underset{0}{\text { Gaps! }} \underset{a}{b}+\infty$
$\mathbf{b}-\mathbf{a}=\mathbf{2}^{-149} \quad-\infty \quad 0_{0}$
6
-

Rounding

-When we perform math on floating point numbers, we have to worry about rounding to fit the result in the significand field.
-The FP hardware carries two extra bits of precision, and then round to get the proper value

- Rounding also occurs when converting: double to a single precision value floating point number to an integer
\qquad
integer > ___ to floating point
Csicicloo Number Reprosenataion \quad to flo

"And in conclusion..."

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	$\underline{\text { Denorm }}$
$1-254$	Anything	$+/-\mathrm{fl} . \mathrm{Pt}$
255	$\underline{0}$	$\underline{+/-\infty}$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

- 4 Rounding modes (default: unbiased)
- MIPS FI ops complicated, expensive

Cle
Cs6icL Loo Number feprosesmataion, Fioating Poon(455)

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

Two's Complement for $\mathrm{N}=32$

$\begin{aligned} & 0000 \text {... } 0000 \\ & 0000 \text {... } 0000 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0000{ }^{\text {two }}= \\ & 0001_{\text {two }}= \end{aligned}$
0000 ... 0000	0000	0000	$0010_{\text {two }}=$
$0111 . . .111$	111		
0111 ... 1111	1111	1111	=
$0111 . . .1111$	1111	1111	$1111^{\text {two }}=$
1000 ... 0000	0000	0000	$0000^{\text {two }}=$
1000 ... 0000	0000	0000	0001 ${ }_{\text {two }}=$
1000 ... 0000	0000	0000	$0010_{\text {two }}=$
$1111 . . .1111$	1111	11	
1111 ... 1111	1111	1111	
1111 ...	111		1111

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit: - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0,1
- Number representation:
- $d_{31} d_{30} \ldots d_{1} d_{0}$ is a 32 digit number
- value $=d_{31} \times B^{31}+d_{30} \times B^{30}+\ldots+d_{1} \times B^{1}+d_{0} \times B^{0}$
- Binary: 0,1 (In binary digits called "bits") $\Rightarrow \cdot 0 b 11010=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$ \#s often written $=16+8+2$

Ob.. $=16$
$=26$
Here 5 digit binary \# turns into a 2 digit decimal \#

- Can we find a base that converts to binary easily?

Col

Two's comp. shortcut: Sign extension

- Convert 2's complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
- 2's comp. positive number has infinite os
- 2's comp. negative number has infinite 1 s
- Binary representation hides leading bits;
sign extension restores some of them
- 16-bit $-4_{\text {ten }}$ to 32 -bit:
$1111111111111100^{\text {two }}$
$11111111111111111111111111111100^{\text {two }}$

FP Addition

- More difficult than with integers
- Can't just add significands
- How do we do it?
- De-normalize to match exponents
- Add significands to get resulting one
- Keep the same exponent
- Normalize (possibly changing exponent)
- Note: If signs differ, just perform a subtract instead.

Examples:	00	0	0000
01	1	0001	
10101100 0011 (binary)	02	2	0010
= 0xAC3	03	3	0011
	04	4	0100
10111 (binary)	05	5	0101
$=00010111$ (binary)	06	6	0110
$=07$	7	0111	
	08	8	1000
$0 \times 3 F 9$	09	9	1001
0 1111111001 (binary)	10	A	1010
	11	B	1011
How do we convert between	13	D	1100
hex and Decimal?	14	E	11110
	15	F	1111

MEMORIZE!

Preview: Signed vs. Unsigned Variables

- Java and C declare integers int
- Use two's complement (signed integer)
- Also, C declaration unsigned int
- Declares a unsigned integer
- Treats 32-bit number as unsigned integer, so most significant bit is part of the number, not a sign bit

MIPS Floating Point Architecture (1/4)

- MIPS has special instructions for floating point operations:
- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
- These instructions are far more complicated than their integer counterparts. They require special hardware and usually they can take
Calmuch longer to compute.
\qquad

MIPS Floating Point Architecture (2/4)

- Problems

- It's inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change from FP to int, or vice versa, within a program. So only one type of instruction will be used on it.
- Some programs do no floating point calculations
- It takes lots of hardware relative to integers to do Floating Point fast
6 \qquad Huddesoson, Summer 2009e vic

Example: Representing $1 / 3$ in MIPS

-1/3
$=0.33333 \cdots_{10}$
$=0.25+0.0625+0.015625+0.00390625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+$.
$=0.0101010101 \ldots 2^{*} 2^{0}$
$=1.0101010101 \ldots{ }_{2}^{*} 2^{-2}$

- Sign: 0
- Exponent =-2 + $127=125=01111101$
- Significand $=0101010101$.

Cal \qquad

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
-Coprocessor 1: FP chip
- contains 32 32-bit registers: $\$ \mathrm{f0} 0$, $\$ 1, \ldots$
- most registers specified in .s and .d instruction refer to this set
- separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...") - Double Precision: by convention, even odd pair contain one DP FP number: $\$ \mathrm{f} 0 / \$ \mathrm{f} 1, \$ \mathrm{f} 2 / \$ \mathrm{f} 3, \ldots, \$ \mathrm{f} 30 / \$ \mathrm{f} 31$
\qquad

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
$\cdot \mathrm{mfc} 0, \mathrm{mtc} 0, \mathrm{mfc} 1, \mathrm{mtc} 1$, etc.
- Appendix pages A-70 to A-74 contain many, many more FP operations.

int \rightarrow float \rightarrow int

if ($\mathrm{i}==$ (int) (float) i)) \{
printf("true");
Coerces and converts it to the nearest
integer (C uses truncation)
i $=$ (int) (3.14159 * f)
(float) integer expression
converts integer to nearest floating point
$\mathrm{f}=\mathrm{f}+$ (float) i ;
Cal Uudasoson. Summer 2009 Q uca
\}

- Will not always print "true"
- Most large values of integers don't have exact floating point representations!
- What about double?

Floating Point Fallacy

- FP add associative: FALSE!

$$
\begin{aligned}
& \cdot x=-1.5 \times 10^{38}, y=1.5 \times 10^{38}, \text { and } z=1.0 \\
& \cdot x+(y+z)=-1.5 \times 10^{38}+\left(1.5 \times 10^{38}+1.0\right) \\
& =-1.5 \times 10^{38}+\left(1.5 \times 10^{38}\right)=\underline{0.0} \\
& \cdot(x+y)+z=\left(-1.5 \times 10^{38}+1.5 \times 10^{38}\right)+1.0 \\
& =(0.0)+1.0=1.0
\end{aligned}
$$

- Therefore, Floating Point add is not associative!
- Why? FP result approximates real result!
- This example: 1.5×10^{38} is so much larger
than 1.0 that $1.5 \times 10^{38}+1.0$ in floating point representation is still 1.5×10^{38}

