
CS61CL L06 Number Representation, Floating Point(1)! Huddleston, Summer 2009 © UCB !

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c  
CS61CL : Machine Structures 

Lecture #6 – Number Representation, IEEE FP 

2009-07-07!

CS61CL L06 Number Representation, Floating Point(2)! Huddleston, Summer 2009 © UCB !

Review: Decimal (base 10) Numbers!

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9  

Example:!
3271 = !
! !(3x103) + (2x102) + (7x101) + (1x100)!

CS61CL L06 Number Representation, Floating Point(3)! Huddleston, Summer 2009 © UCB !

Review: Hexadecimal (base 16) Numbers!
• Hexadecimal:  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F!
• Normal digits + 6 more from the alphabet!
•  In C, written as 0x… (e.g., 0xFAB5)!

• Conversion: Binary!Hex!
• 1 hex digit represents 16 decimal values!
• 4 binary digits represent 16 decimal values!
" 1 hex digit replaces 4 binary digits!

• One hex digit is a “nibble”. Two is a “byte”!
• 2 bits is a “half-nibble”. Shave and a haircut…!

• Example:!
• 1010 1100 0011 (binary) = 0x_____ ?!

CS61CL L06 Number Representation, Floating Point(4)! Huddleston, Summer 2009 © UCB !

What to do with representations of numbers?!

•  Just what we do with numbers!!
• Add them!
• Subtract them!
• Multiply them!
• Divide them!
• Compare them!

•  Example: 10 + 7 = 17!
• …so simple to add in binary that we can

build circuits to do it!!
• subtraction just as you would in decimal!
• Comparison: How do you tell if X > Y ?!

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

1 1

CS61CL L06 Number Representation, Floating Point(5)! Huddleston, Summer 2009 © UCB !

Which base do we use?!

• Decimal: great for humans, especially when
doing arithmetic!
• Hex: if human looking at long strings of

binary numbers, its much easier to convert
to hex and look 4 bits/symbol!

• Terrible for arithmetic on paper!

• Binary: what computers use;  
you will learn how computers do +, -, *, /!

• To a computer, numbers always binary!
• Regardless of how number is written:!
• 32ten == 3210 == 0x20 == 1000002 == 0b100000!
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing!
CS61CL L06 Number Representation, Floating Point(6)! Huddleston, Summer 2009 © UCB !

BIG IDEA: Bits can represent anything!!!

• Characters?!
• 26 letters " 5 bits (25 = 32)!
• upper/lower case + punctuation  

 " 7 bits (in 8) (“ASCII”)!
• standard code to cover all the worldʼs

languages " 8,16,32 bits (“Unicode”) 
www.unicode.com!

• Logical values?!
• 0 " False, 1 " True!

• colors ? Ex:!
• locations / addresses? commands?!
• MEMORIZE: N bits ! at most 2N things!

Red (00)! Green (01)! Blue (11)!

CS61CL L06 Number Representation, Floating Point(7)! Huddleston, Summer 2009 © UCB !

How to Represent Negative Numbers?!
• So far, unsigned numbers!
• Obvious solution: define leftmost bit to be sign! !

• 0 " +, 1 " – !
• Rest of bits can be numerical value of number!

• Representation called sign and magnitude!
• MIPS uses 32-bit integers. +1ten would be:  

!0000 0000 0000 0000 0000 0000 0000 0001!
• And –1ten in sign and magnitude would be:  

!1000 0000 0000 0000 0000 0000 0000 0001!

CS61CL L06 Number Representation, Floating Point(8)! Huddleston, Summer 2009 © UCB !

Shortcomings of sign and magnitude?!

• Arithmetic circuit complicated!
• Special steps depending whether signs are
the same or not!

• Also, two zeros!
•  0x00000000 = +0ten!

•  0x80000000 = –0ten !
• What would two 0s mean for programming?!

• Therefore sign and magnitude abandoned!

CS61CL L06 Number Representation, Floating Point(9)! Huddleston, Summer 2009 © UCB !

Another try: complement the bits!

• Example: ! 710 = 001112 !–710 = 110002!

• Called Oneʼs Complement!
• Note: positive numbers have leading 0s,
negative numbers have leadings 1s.!

00000 00001 01111 ...

11111 11110 10000 ...

• What is -00000 ? Answer: 11111!
• How many positive numbers in N bits?!

• How many negative numbers?!

CS61CL L06 Number Representation, Floating Point(10)! Huddleston, Summer 2009 © UCB !

Shortcomings of Oneʼs complement?!

• Arithmetic still a somewhat complicated.!
• Still two zeros!

•  0x00000000 = +0ten!

•  0xFFFFFFFF = -0ten !

• Although used for awhile on some
computer products, oneʼs complement
was eventually abandoned because
another solution was better.!

CS61CL L06 Number Representation, Floating Point(11)! Huddleston, Summer 2009 © UCB !

Standard Negative Number Representation!
• What is result for unsigned numbers if tried
to subtract large number from a small one?!
• Would try to borrow from string of leading 0s,  
so result would have a string of leading 1s!

-  3 - 4 " 00…0011 – 00…0100 = 11…1111!
• With no obvious better alternative, pick
representation that made the hardware simple!

• As with sign and magnitude,  
leading 0s " positive, leading 1s " negative!

-  000000...xxx is ≥ 0, 111111...xxx is < 0!
-  except 1…1111 is -1, not -0 (as in sign & mag.)!

• This representation is Twoʼs Complement !

CS61CL L06 Number Representation, Floating Point(12)! Huddleston, Summer 2009 © UCB !

2ʼs Complement Number “line”: N = 5!
• 2N-1 non-
negatives !
• 2N-1 negatives!
• one zero!
• how many
positives?!

00000 00001
00010

11111
11110

10000 01111 10001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-4 11100

00000 00001 01111 ...

11111 11110 10000 ...

CS61CL L06 Number Representation, Floating Point(13)! Huddleston, Summer 2009 © UCB !

Twoʼs Complement Formula !
• Can represent positive and negative numbers
in terms of the bit value times a power of 2:!

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20!

• Example: 1101two!
= 1x-(23) + 1x22 + 0x21 + 1x20!

= -23 + 22 + 0 + 20!
= -8 + 4 + 0 + 1 !
= -8 + 5!
= -3ten!

CS61CL L06 Number Representation, Floating Point(14)! Huddleston, Summer 2009 © UCB !

Twoʼs Complement shortcut: Negation!
• Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result !
• Proof*: Sum of number and its (oneʼs)
complement must be 111...111two!

However, 111...111two= -1ten!
Let xʼ " oneʼs complement representation of x!
Then x + xʼ = -1 " x + xʼ + 1 = 0 " -x = xʼ + 1!

• Example: -3 to +3 to -3  
x : 1111 1111 1111 1111 1111 1111 1111 1101two xʼ: 0000 0000 0000 0000 0000 0000 0000 0010two +1: 0000 0000 0000 0000 0000 0000 0000 0011two ()ʼ: 1111 1111 1111 1111 1111 1111 1111 1100two +1: 1111 1111 1111 1111 1111 1111 1111 1101two!

You should be able to do this in your head…!

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

CS61CL L06 Number Representation, Floating Point(15)! Huddleston, Summer 2009 © UCB !

What if too big?!
•  Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.!

•  Numbers really have an # number of digits!
•  with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits !
•  Just donʼt normally show leading digits!

•  If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.!

00000 00001 00010 11111 11110
unsigned

CS61CL L06 Number Representation, Floating Point(16)! Huddleston, Summer 2009 © UCB !

What about other numbers?!
1.  Very large numbers? !(seconds/millennium)  

 " 31,556,926,00010 (3.155692610 x 1010)!

2.  Very small numbers? (Bohr radius) 
 " 0.000000000052917710m (5.2917710 x 10-11) !

3.  Numbers with both integer & fractional parts? 
 " 1.5 !

First consider #3. !

…our solution will also help with 1 and 2.!

CS61CL L06 Number Representation, Floating Point(17)! Huddleston, Summer 2009 © UCB !

Representation of Fractions!
“Binary Point” like decimal point signifies

boundary between integer and fractional parts:!

xx.yyyy"
21" 20" 2-1" 2-2" 2-3" 2-4"

Example 6-bit
representation:"

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510 !

If we assume “fixed binary point”, range of 6-bit
representations with this format: "
" " "0 to 3.9375 (almost 4)"

CS61CL L06 Number Representation, Floating Point(18)! Huddleston, Summer 2009 © UCB !

Fractional Powers of 2!

0 "1.0 " "1"
1  0.5 " "1/2"
2  0.25 "1/4"
3  0.125 "1/8"
4  0.0625 "1/16"
5  0.03125 "1/32"
6  0.015625"
7  0.0078125"
8  0.00390625"
9  0.001953125"
10  0.0009765625"
11  0.00048828125"
12  0.000244140625"
13  0.0001220703125"
14  0.00006103515625"
15  0.000030517578125"

i 2-i!

CS61CL L06 Number Representation, Floating Point(19)! Huddleston, Summer 2009 © UCB !

Representation of Fractions with Fixed Pt.!
What about addition and multiplication?!

Addition is
straightforward:"

01.100 1.510
00.100 0.510
10.000 2.010

Multiplication a bit more complex:"

 01.100 1.510
 00.100 0.510
 00 000
 000 00
 0110 0
 00000
 00000
0000110000

HI LOW
Whereʼs the answer, 0.11? (need to remember where point is)!

CS61CL L06 Number Representation, Floating Point(20)! Huddleston, Summer 2009 © UCB !

Representation of Fractions!
So far, in our examples we used a “fixed” binary point
what we really want is to “float” the binary point. Why?!

Floating binary point most effective use of our limited bits (and
thus more accuracy in our number representation):"

… 000000.001010100000…"

Any other solution would lose accuracy!"

example: put 0.1640625 into binary. Represent as in
5-bits choosing where to put the binary point."

Store these bits and keep track of the binary
point 2 places to the left of the MSB"

With floating point rep., each numeral carries a exponent field recording
the whereabouts of its binary point. !

The binary point can be outside the stored bits, so very large and small
numbers can be represented.!

CS61CL L06 Number Representation, Floating Point(21)! Huddleston, Summer 2009 © UCB !

Scientific Notation (in Decimal)!

6.0210 x 1023!

radix (base)!decimal point!

mantissa! exponent!

• Normalized form: no leadings 0s  
(exactly one digit to left of decimal point)!
• Alternatives to representing 1/1,000,000,000!

• Normalized: !1.0 x 10-9!
• Not normalized: !0.1 x 10-8,10.0 x 10-10 !

CS61CL L06 Number Representation, Floating Point(22)! Huddleston, Summer 2009 © UCB !

Scientific Notation (in Binary)!

1.0two x 2-1!

radix (base)!“binary point”!

exponent!

• Computer arithmetic that supports it
called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers!

• Declare such variable in C as float!

mantissa!

CS61CL L06 Number Representation, Floating Point(23)! Huddleston, Summer 2009 © UCB !

Floating Point Representation (1/2)!
• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo!
• Multiple of Word Size (32 bits)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• S represents Sign ! !

!Exponent represents yʼs !!
!Significand represents xʼs!

• Represent numbers as small as  
2.0 x 10-38 to as large as 2.0 x 1038 !

CS61CL L06 Number Representation, Floating Point(24)! Huddleston, Summer 2009 © UCB !

Floating Point Representation (2/2)!
• What if result too large? !

(> 2.0x1038 , < -2.0x1038)!
• Overflow! " Exponent larger than represented in 8-

bit Exponent field!

• What if result too small? !
(>0 & < 2.0x10-38 , <0 & > - 2.0x10-38)!
• Underflow! " Negative exponent larger than

represented in 8-bit Exponent field!

• What would help reduce chances of overflow
and/or underflow?!

0" 2x10-38" 2x1038"1"-1" -2x10-38"-2x1038"

underflow" overflow"overflow"

CS61CL L06 Number Representation, Floating Point(25)! Huddleston, Summer 2009 © UCB !

Double Precision Fl. Pt. Representation!
• Next Multiple of Word Size (64 bits)!

• Double Precision (vs. Single Precision)!
• C variable declared as double!

• Represent numbers almost as small as  
2.0 x 10-308 to almost as large as 2.0 x 10308 !

• But primary advantage is greater accuracy  
due to larger significand!

0!31!
S! Exponent!

30! 20!19!
Significand!

1 bit! 11 bits! 20 bits!
Significand (contʼd)!

32 bits!

CS61CL L06 Number Representation, Floating Point(26)! Huddleston, Summer 2009 © UCB !

QUAD Precision Fl. Pt. Representation!
• Next Multiple of Word Size (128 bits)!

• Unbelievable range of numbers!
• Unbelievable precision (accuracy)!

• IEEE 754-2008, Finalized Aug 2008!
• 15 exponent bits!
• 112 significand bits (113 precision bits)!

• Oct-Precision? !
• Some have tried, no real traction so far!

• Half-Precision? !
• Yep, thatʼs for a short (16 bit)!

en.wikipedia.org/wiki/Quad_precision
en.wikipedia.org/wiki/Half_precision

CS61CL L06 Number Representation, Floating Point(27)! Huddleston, Summer 2009 © UCB !

IEEE 754 Floating Point Standard (1/3)!
Single Precision (DP similar):!

•  Sign bit:! !1 means negative ! !!
! ! ! 0 means positive!

• Significand:!
• To pack more bits, leading 1 implicit for

normalized numbers!
• 1 + 23 bits single, 1 + 52 bits double!
• always true: 0 < Significand < 1

(for normalized numbers)!
• Note: reserve exponent value 0 to mean no

implicit leading 1 (eg: 0)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!

CS61CL L06 Number Representation, Floating Point(28)! Huddleston, Summer 2009 © UCB !

IEEE 754 Floating Point Standard (2/3)!

• IEEE 754 uses “biased exponent”
representation. !
• Designers wanted FP numbers to be used
even if no FP hardware; e.g., sort records with
FP numbers using integer compares!

• Wanted bigger (integer) exponent field to
represent bigger numbers. !

• 2ʼs complement poses a problem (because
negative numbers look bigger)!

• Weʼre going to see that the numbers are
ordered EXACTLY as in sign-magnitude!

-  I.e., counting from binary odometer 00…00 up to
11…11 goes from 0 to +MAX to -0 to -MAX to 0!

CS61CL L06 Number Representation, Floating Point(29)! Huddleston, Summer 2009 © UCB !

IEEE 754 Floating Point Standard (3/3)!
• Called Biased Notation, where bias is
number subtracted to get real number!
• IEEE 754 uses bias of 127 for single prec.!
• Subtract 127 from Exponent field to get

actual value for exponent!
• 1023 is bias for double precision!

• Summary (single precision):!
0!31!

S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

CS61CL L06 Number Representation, Floating Point(30)! Huddleston, Summer 2009 © UCB !

Example: Converting Binary FP to Decimal!

• Sign: 0 => positive!
• Exponent: !

• 0110 1000two = 104ten!
• Bias adjustment: 104 - 127 = -23!

• Significand:!
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22  
= 1.0 + 0.666115!

0! 0110 1000! 101 0101 0100 0011 0100 0010!

• Represents: 1.666115ten*2-23 ~ 1.986*10-7

! ! !(about 2/10,000,000)!

CS61CL L06 Number Representation, Floating Point(31)! Huddleston, Summer 2009 © UCB !

Example: Converting Decimal to FP!

1.  Denormalize: -23.40625!
2.  Convert integer part:!

23 = 16 + (7 = 4 + (3 = 2 + (1))) = 101112!

3.  Convert fractional part:!
.40625 = .25 + (.15625 = .125 + (.03125)) = .011012!

4.  Put parts together and normalize:!
10111.01101 = 1.011101101 x 24!

5.  Convert exponent: 127 + 4 = 100000112!

1! 1000 0011! 011 1011 0100 0000 0000 0000!

-2.340625 x 101!

CS61CL L06 Number Representation, Floating Point(32)! Huddleston, Summer 2009 © UCB !

Understanding the Significand (1/2)!

• Method 1 (Fractions):!
• In decimal: 0.34010 ! ! ! !!
" 34010/100010 ! ! ! ! !!
" 3410/10010!

• In binary: 0.1102 !" 1102/10002 = 610/810 !!
! ! !" 112/1002 = 310/410!

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better!

CS61CL L06 Number Representation, Floating Point(33)! Huddleston, Summer 2009 © UCB !

Understanding the Significand (2/2)!

• Method 2 (Place Values):!
• Convert from scientific notation!
• In decimal: !1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)!

• In binary: !1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)!

• Interpretation of value in each position
extends beyond the decimal/binary point!

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers!

CS61CL L06 Number Representation, Floating Point(34)! Huddleston, Summer 2009 © UCB !

Precision and Accuracy!

Precision is a count of the number bits used to represent
a value.!

Accuracy is a measure of the difference between the
actual value of a number and its computer
representation.!

Donʼt confuse these two terms!"

High precision permits high accuracy but doesnʼt "
guarantee it. It is possible to have high precision"

but low accuracy. "

Example: "float pi = 3.14159…;"
"pi will be represented using all 24 bits of the "
"significant (highly precise), but is only an "

"approximation (not accurate). "

CS61CL L06 Number Representation, Floating Point(35)! Huddleston, Summer 2009 © UCB !

Representation for ± ∞!

• In FP, divide by 0 should produce ± ∞,
not overflow.!
• Why?!

• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison!

• Ask math majors!

• IEEE 754 represents ± ∞!
• Most positive exponent reserved for ∞!
• Significands all zeroes!

CS61CL L06 Number Representation, Floating Point(36)! Huddleston, Summer 2009 © UCB !

Representation for 0!

• Represent 0?!
• exponent all zeroes!
• significand all zeroes!
• What about sign? Both cases valid.!
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000!

CS61CL L06 Number Representation, Floating Point(37)! Huddleston, Summer 2009 © UCB !

Special Numbers!

• What have we defined so far? !
!(Single Precision)!

Exponent !Significand ! !Object!
0 ! ! !0 ! ! !0!
0 ! ! !nonzero ???!
1-254 ! !anything ! !+/- fl. pt. #!
255 ! !0 ! ! !+/- ∞!
255 ! !nonzero ???!

• “Waste not, want not”!
• Weʼll talk about Exp=0,255 & Sig!=0 later!

CS61CL L06 Number Representation, Floating Point(38)! Huddleston, Summer 2009 © UCB !

Representation for Not a Number!

• What do I get if I calculate ! !
!sqrt(-4.0)or 0/0?!

• If ∞ not an error, these shouldnʼt be either!
• Called Not a Number (NaN)!

-  Exponent = all 1s (255),!
-  Significand nonzero!

• Why is this useful?!
• Hope NaNs help with debugging?!
• They contaminate: op(NaN, X) = NaN!

CS61CL L06 Number Representation, Floating Point(39)! Huddleston, Summer 2009 © UCB !

Representation for Denorms (1/2)!

• Problem: Thereʼs a gap among
representable FP numbers around 0!

• Smallest representable pos num:!
a = 1.0… 2 * 2-126 = 2-126!

• Second smallest representable pos num:!
b != 1.000……1 2 * 2-126  

= (1 + 0.00…12) * 2-126  
= (1 + 2-23) * 2-126  
= 2-126 + 2-149!

!a - 0 = 2-126!

!b - a = 2-149! a"0" +"-"
Gaps!"b"

Normalization and
implicit 1  

is to blame!"

CS61CL L06 Number Representation, Floating Point(40)! Huddleston, Summer 2009 © UCB !

• Solution:!
• We still havenʼt used Exponent=0,  
Significand nonzero!

• Denormalized number: no (implied)
leading 1, implicit exponent = -126!

• Smallest representable pos num:!
-  A = 2-149!

• Second smallest representable pos num:!
-  b = 2-148!

0" +"-"

Representation for Denorms (2/2)!

CS61CL L06 Number Representation, Floating Point(41)! Huddleston, Summer 2009 © UCB !

Special Numbers Summary!

• Reserve exponents, significands:!

Exponent Significand Object
0 0 +/- 0
0 nonzero +/- Denorm

1-254 anything +/- Norm
255 0 +/- !
255 nonzero NaN

CS61CL L06 Number Representation, Floating Point(42)! Huddleston, Summer 2009 © UCB !

Rounding!

• When we perform math on floating point
numbers, we have to worry about
rounding to fit the result in the
significand field.!
• The FP hardware carries two extra bits
of precision, and then round to get the
proper value!
• Rounding also occurs when converting:!

 double to a single precision value!
 floating point number to an integer!
 integer > ___ to floating point!

CS61CL L06 Number Representation, Floating Point(43)! Huddleston, Summer 2009 © UCB !

IEEE FP Rounding Modes!

•  Round towards + ∞!
•  ALWAYS round “up”: 2.001 $ 3, -2.001 $ -2!

•  Round towards - ∞!
•  ALWAYS round “down”: 1.999 $ 1, -1.999 $ -2!

•  Truncate!
•  Just drop the last bits (round towards 0)!

•  Unbiased (default mode). Midway? Round to even!
•  Normal rounding, almost: 2.4 $ 2, 2.6 $ 3, 2.5 $ 2, 3.5 $ 4!
•  Round like you learned in grade school (nearest int)!
•  Except if the value is right on the borderline, in which case we round

to the nearest EVEN number!
•  Insures fairness on calculation!
•  This way, half the time we round up on tie, the other half time we

round down. Tends to balance out inaccuracies!

Examples in decimal (but, of course, IEEE754 in binary)"

CS61CL L06 Number Representation, Floating Point(44)! Huddleston, Summer 2009 © UCB !

“And in conclusion…”!
• Floating Point lets us:!

•  Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.!

•  Store approximate values for very large and very small #s.!

•  IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)!

• Summary (single precision):!
0!31!

S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

CS61CL L06 Number Representation, Floating Point(45)! Huddleston, Summer 2009 © UCB !

“And in conclusion…”!

• Reserve exponents, significands:!

• 4 Rounding modes (default: unbiased)!
• MIPS Fl ops complicated, expensive!

Exponent Significand Object
0 0 0
0 nonzero Denorm

1-254 Anything +/- fl. Pt #

255 0 +/- !
255 nonzero NaN

CS61CL L06 Number Representation, Floating Point(46)! Huddleston, Summer 2009 © UCB !

Bonus slides!

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!
• The slides will appear in the order they
would have in the normal presentation!

CS61CL L06 Number Representation, Floating Point(47)! Huddleston, Summer 2009 © UCB !

Numbers: positional notation!
• Number Base B " B symbols per digit:!

• Base 10 (Decimal): !0, 1, 2, 3, 4, 5, 6, 7, 8, 9  
Base 2 (Binary): !0, 1!

• Number representation: !
• d31d30 ... d1d0 is a 32 digit number!
• value = d31 % B31 + d30 % B30 + ... + d1 % B1 + d0 % B0!

• Binary: !0,1 (In binary digits called “bits”)!
• 0b11010 != 1%24 + 1%23 + 0%22 + 1%21 + 0%20  

!= 16 + 8 + 2  
!= 26!

• Here 5 digit binary # turns into a 2 digit decimal #!
• Can we find a base that converts to binary easily?!

#s often written 
0b…!

CS61CL L06 Number Representation, Floating Point(48)! Huddleston, Summer 2009 © UCB !

Decimal vs. Hexadecimal vs. Binary!
Examples:!
1010 1100 0011 (binary)  
= 0xAC3!
10111 (binary)  
= 0001 0111 (binary)  
= 0x17!
0x3F9  
= 11 1111 1001 (binary)!
How do we convert between
hex and Decimal?!

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

MEMORIZE!!

Examples:!
1010 1100 0011 (binary)  

= 0xAC3!
10111 (binary)  

= 0001 0111 (binary)  
= 0x17!
0x3F9  

= 11 1111 1001 (binary)!
How do we convert between

hex and Decimal?!

CS61CL L06 Number Representation, Floating Point(49)! Huddleston, Summer 2009 © UCB !

Twoʼs Complement for N=32!
 0000 ... 0000 0000 0000 0000two = !0ten 0000 ... 0000 0000 0000 0001two =

!1ten 0000 ... 0000 0000 0000 0010two = !2ten . . . 
0111 ... 1111 1111 1111 1101two = ! 2,147,483,645ten 0111 ... 1111 1111 1111 1110two = ! 2,147,483,646ten 0111 ... 1111 1111 1111 1111two = ! 2,147,483,647ten 1000 ... 0000 0000 0000 0000two = !–2,147,483,648ten 1000 ... 0000 0000 0000 0001two = !–2,147,483,647ten 1000 ... 0000 0000 0000 0010two = !–2,147,483,646ten . . .  
1111 ... 1111 1111 1111 1101two = !–3ten 1111 ... 1111 1111 1111 1110two = !–2ten 1111 ... 1111 1111 1111 1111two = !–1ten!

• One zero; 1st bit called sign bit !
• 1 “extra” negative:no positive 2,147,483,648ten

CS61CL L06 Number Representation, Floating Point(50)! Huddleston, Summer 2009 © UCB !

Twoʼs comp. shortcut: Sign extension!
• Convert 2ʼs complement number rep.

using n bits to more than n bits!
•  Simply replicate the most significant bit

(sign bit) of smaller to fill new bits!
•  2ʼs comp. positive number has infinite 0s!
•  2ʼs comp. negative number has infinite 1s!
•  Binary representation hides leading bits;  
sign extension restores some of them!
•  16-bit -4ten to 32-bit: !

1111 1111 1111 1100two !

1111 1111 1111 1111 1111 1111 1111 1100two!
CS61CL L06 Number Representation, Floating Point(51)! Huddleston, Summer 2009 © UCB !

Preview: Signed vs. Unsigned Variables!

• Java and C declare integers int
• Use twoʼs complement (signed integer)!

• Also, C declaration unsigned int
• Declares a unsigned integer!
• Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit!

CS61CL L06 Number Representation, Floating Point(52)! Huddleston, Summer 2009 © UCB !

“Father” of the Floating point standard!

IEEE Standard 754
for Binary Floating-

Point Arithmetic.!

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan!
1989!

ACM Turing!
Award Winner!!

CS61CL L06 Number Representation, Floating Point(53)! Huddleston, Summer 2009 © UCB !

FP Addition!

• More difficult than with integers!
• Canʼt just add significands!
• How do we do it?!

• De-normalize to match exponents!
• Add significands to get resulting one!
• Keep the same exponent!
• Normalize (possibly changing exponent)!

• Note: If signs differ, just perform a
subtract instead.!

CS61CL L06 Number Representation, Floating Point(54)! Huddleston, Summer 2009 © UCB !

MIPS Floating Point Architecture (1/4)!

• MIPS has special instructions for
floating point operations:!

• Single Precision: ! ! ! !!
! !add.s, sub.s, mul.s, div.s!

• Double Precision: ! ! ! !!
!add.d, sub.d, mul.d, div.d!

• These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually they can take
much longer to compute.!

CS61CL L06 Number Representation, Floating Point(55)! Huddleston, Summer 2009 © UCB !

MIPS Floating Point Architecture (2/4)!

• Problems:!
• Itʼs inefficient to have different
instructions take vastly differing
amounts of time.!

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.!

• Some programs do no floating point
calculations!

• It takes lots of hardware relative to
integers to do Floating Point fast!

CS61CL L06 Number Representation, Floating Point(56)! Huddleston, Summer 2009 © UCB !

MIPS Floating Point Architecture (3/4)!

• 1990 Solution: Make a completely
separate chip that handles only FP.!
• Coprocessor 1: FP chip!

• contains 32 32-bit registers: $f0, $f1, …!
• most registers specified in .s and .d
instruction refer to this set!

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention, even/
odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

CS61CL L06 Number Representation, Floating Point(57)! Huddleston, Summer 2009 © UCB !

MIPS Floating Point Architecture (4/4)!

• 1990 Computer actually contains
multiple separate chips:!

• Processor: handles all the normal stuff!
• Coprocessor 1: handles FP and only FP; !
• more coprocessors?… Yes, later!
• Today, cheap chips may leave out FP HW!

• Instructions to move data between
main processor and coprocessors:!
• mfc0, mtc0, mfc1, mtc1, etc.!

• Appendix pages A-70 to A-74 contain
many, many more FP operations.!

CS61CL L06 Number Representation, Floating Point(58)! Huddleston, Summer 2009 © UCB !

Example: Representing 1/3 in MIPS!

• 1/3 !
= 0.33333…10!

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + … !
= 1/4 + 1/16 + 1/64 + 1/256 + …!
= 2-2 + 2-4 + 2-6 + 2-8 + …!
= 0.0101010101… 2 * 20!

= 1.0101010101… 2 * 2-2!

• Sign: 0!
• Exponent = -2 + 127 = 125 = 01111101!
• Significand = 0101010101…!

0" 0111 1101" 0101 0101 0101 0101 0101 010"

CS61CL L06 Number Representation, Floating Point(59)! Huddleston, Summer 2009 © UCB !

Casting floats to ints and vice versa!

(int) floating_point_expression!
Coerces and converts it to the nearest
integer (C uses truncation)!
i = (int) (3.14159 * f);!

(float) integer_expression!
converts integer to nearest floating point!
f = f + (float) i;!

CS61CL L06 Number Representation, Floating Point(60)! Huddleston, Summer 2009 © UCB !

int $ float $ int!

• Will not always print “true”!
• Most large values of integers donʼt
have exact floating point
representations!!
• What about double?!

if (i == (int)((float) i)) {"
 printf(“true”);"
}"

CS61CL L06 Number Representation, Floating Point(61)! Huddleston, Summer 2009 © UCB !

float $ int $ float!

• Will not always print “true”!
• Small floating point numbers (<1)
donʼt have integer representations!
• For other numbers, rounding errors!

if (f == (float)((int) f)) {"
 printf(“true”);"
}"

CS61CL L06 Number Representation, Floating Point(62)! Huddleston, Summer 2009 © UCB !

Floating Point Fallacy!

• FP add associative: FALSE!!
• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0!
• x + (y + z) != –1.5x1038 + (1.5x1038 + 1.0)!
! != –1.5x1038 + (1.5x1038) = 0.0!

• (x + y) + z != (–1.5x1038 + 1.5x1038) + 1.0!
! != (0.0) + 1.0 = 1.0!

• Therefore, Floating Point add is not
associative!!

• Why? FP result approximates real result!!
• This example: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
representation is still 1.5 x 1038!

