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Review: Decimal (base 10) Numbers!

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9  

Example:!
3271 = !
! !(3x103) + (2x102) + (7x101) + (1x100)!
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Review: Hexadecimal (base 16) Numbers!
• Hexadecimal:  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F!
• Normal digits + 6 more from the alphabet!
•  In C, written as 0x… (e.g., 0xFAB5)!

• Conversion: Binary!Hex!
• 1 hex digit represents 16 decimal values!
• 4 binary digits represent 16 decimal values!
" 1 hex digit replaces 4 binary digits!

• One hex digit is a “nibble”. Two is a “byte”!
• 2 bits is a “half-nibble”. Shave and a haircut…!

• Example:!
• 1010 1100 0011 (binary) = 0x_____ ?!
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What to do with representations of numbers?!

•  Just what we do with numbers!!
• Add them!
• Subtract them!
• Multiply them!
• Divide them!
• Compare them!

•  Example: 10 + 7 = 17!
• …so simple to add in binary that we can 

build circuits to do it!!
• subtraction just as you would in decimal!
• Comparison: How do you tell if X > Y ?!

      1    0     1    0 

+    0    1     1    1 

------------------------- 

1    0    0     0    1 

1 1 
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Which base do we use?!

• Decimal: great for humans, especially when 
doing arithmetic!
• Hex: if human looking at long strings of 

binary numbers, its much easier to convert 
to hex and look 4 bits/symbol!

• Terrible for arithmetic on paper!

• Binary: what computers use;  
you will learn how computers do +, -, *, /!

• To a computer, numbers always binary!
• Regardless of how number is written:!
• 32ten == 3210 == 0x20 == 1000002 == 0b100000!
• Use subscripts “ten”, “hex”, “two” in book, 

slides when might be confusing!
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BIG IDEA: Bits can represent anything!!!

• Characters?!
• 26 letters " 5 bits (25 = 32)!
• upper/lower case + punctuation  

 " 7 bits (in 8) (“ASCII”)!
• standard code to cover all the worldʼs 

languages " 8,16,32 bits   (“Unicode”) 
www.unicode.com!

• Logical values?!
• 0 " False, 1 " True!

• colors ? Ex:!
• locations / addresses? commands?!
• MEMORIZE: N bits ! at most 2N things!

Red (00)! Green (01)! Blue (11)!
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How to Represent Negative Numbers?!
• So far, unsigned numbers!
• Obvious solution: define leftmost bit to be sign! !

• 0 " +, 1 " – !
• Rest of bits can be numerical value of number!

• Representation called sign and magnitude!
• MIPS uses 32-bit integers. +1ten would be:  

!0000 0000 0000 0000 0000 0000 0000 0001!
• And –1ten in sign and magnitude would be:  

!1000 0000 0000 0000 0000 0000 0000 0001!

CS61CL L06 Number Representation, Floating Point(8)! Huddleston, Summer 2009 © UCB !

Shortcomings of sign and magnitude?!

• Arithmetic circuit complicated!
• Special steps depending whether signs are 
the same or not!

• Also, two zeros!
•  0x00000000 = +0ten!

•  0x80000000 = –0ten !
• What would two 0s mean for programming?!

• Therefore sign and magnitude abandoned!
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Another try: complement the bits!

• Example: ! 710 = 001112  !–710 = 110002!

• Called Oneʼs Complement!
• Note: positive numbers have leading 0s, 
negative numbers have leadings 1s.!

00000 00001 01111 ... 

11111 11110 10000 ... 

• What is -00000 ? Answer: 11111!
• How many positive numbers in N bits?!

• How many negative numbers?!
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Shortcomings of Oneʼs complement?!

• Arithmetic still a somewhat complicated.!
• Still two zeros!

•  0x00000000 = +0ten!

•  0xFFFFFFFF = -0ten !

• Although used for awhile on some 
computer products, oneʼs complement 
was eventually abandoned because 
another solution was better.!
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Standard Negative Number Representation!
• What is result for unsigned numbers if tried 
to subtract large number from a small one?!
• Would try to borrow from string of leading 0s,  
so result would have a string of leading 1s!

-  3 - 4 " 00…0011 – 00…0100  = 11…1111!
• With no obvious better alternative, pick 
representation that made the hardware simple!

• As with sign and magnitude,   
leading 0s " positive, leading 1s " negative!

-  000000...xxx  is ≥ 0, 111111...xxx is < 0!
-  except 1…1111 is -1, not -0 (as in sign & mag.)!

• This representation is Twoʼs Complement !
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2ʼs Complement Number “line”: N = 5!
• 2N-1 non-
negatives !
• 2N-1 negatives!
• one zero!
• how many 
positives?!

00000 00001 
00010 

11111 
11110 

10000 01111 10001 

0 1 2 
-1 

-2 

-15 -16 15 

. 

. 

. 

. 

. 

. 

-3 
11101 

-4 11100 

00000 00001 01111 ... 

11111 11110 10000 ... 
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Twoʼs Complement Formula !
• Can represent positive and negative numbers 
in terms of the bit value times a power of 2:!

d31 x -(231)  + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20!

• Example: 1101two!
= 1x-(23) + 1x22 + 0x21 + 1x20!

= -23 + 22 + 0 + 20!
= -8 + 4 + 0 + 1 !
= -8 + 5!
= -3ten!
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Twoʼs Complement shortcut: Negation!
• Change every 0 to 1 and 1 to 0 (invert or 
complement), then add 1 to the result !
• Proof*: Sum of number and its (oneʼs) 
complement must be 111...111two!

However, 111...111two= -1ten!
Let xʼ " oneʼs complement representation of x!
Then x + xʼ = -1 " x + xʼ + 1 = 0 " -x = xʼ + 1!

• Example: -3 to +3 to -3  
x :  1111 1111 1111 1111 1111 1111 1111 1101two xʼ:  0000 0000 0000 0000 0000 0000 0000 0010two +1: 0000 0000 0000 0000 0000 0000 0000 0011two ()ʼ:  1111 1111 1111 1111 1111 1111 1111 1100two +1: 1111 1111 1111 1111 1111 1111 1111 1101two!

You should be able to do this in your head…!

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html 
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What if too big?!
•  Binary bit patterns above are simply 

representatives of numbers.  Strictly speaking 
they are called “numerals”.!

•  Numbers really have an # number of digits!
•  with almost all being same (00…0 or 11…1) except 

for a few of the rightmost digits !
•  Just donʼt normally show leading digits!

•  If result of add (or -, *, / ) cannot be 
represented by these rightmost HW bits, 
overflow is said to have occurred.!

00000 00001 00010 11111 11110 
unsigned 
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What about other numbers?!
1.  Very large numbers? !(seconds/millennium)  

 " 31,556,926,00010 (3.155692610 x 1010)!

2.  Very small numbers? (Bohr radius) 
 " 0.000000000052917710m (5.2917710 x 10-11) !

3.  Numbers with both integer & fractional parts? 
 " 1.5 !

First consider #3.  !

…our solution will also help with 1 and 2.!
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Representation of Fractions!
“Binary Point” like decimal point signifies 

boundary between integer and fractional parts:!

xx.yyyy"
21" 20" 2-1" 2-2" 2-3" 2-4"

Example 6-bit 
representation:"

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510 !

If we assume “fixed binary point”, range of 6-bit 
representations with this format: "
" " "0 to 3.9375 (almost 4)"
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Fractional Powers of 2!

0 "1.0 " "1"
1  0.5 " "1/2"
2  0.25 "1/4"
3  0.125 "1/8"
4  0.0625 "1/16"
5  0.03125 "1/32"
6  0.015625"
7  0.0078125"
8  0.00390625"
9  0.001953125"
10  0.0009765625"
11  0.00048828125"
12  0.000244140625"
13  0.0001220703125"
14  0.00006103515625"
15  0.000030517578125"

i    2-i!
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Representation of Fractions with Fixed Pt.!
What about addition and multiplication?!

Addition is 
straightforward:"

01.100  1.510 
00.100  0.510 
10.000  2.010 

Multiplication a bit more complex:"

         01.100  1.510 
     00.100  0.510  
     00 000 
    000 00 
   0110 0 
  00000 
 00000 
0000110000 

HI    LOW 
Whereʼs the answer, 0.11? (need to remember where point is)!
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Representation of Fractions!
So far, in our examples we used a “fixed” binary point 
what we really want is to “float” the binary point.  Why?!

Floating binary point most effective use of our limited bits (and 
thus more accuracy in our number representation):"

… 000000.001010100000…"

Any other solution would lose accuracy!"

example:  put 0.1640625 into binary.  Represent as in 
5-bits choosing where to put the binary point."

Store these bits and keep track of the binary 
point 2 places to the left of the MSB"

With floating point rep., each numeral carries a exponent field recording 
the whereabouts of its binary point.  !

The binary point can be outside the stored bits, so very large and small 
numbers can be represented.!
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Scientific Notation (in Decimal)!

6.0210 x 1023!

radix (base)!decimal point!

mantissa! exponent!

• Normalized form: no leadings 0s  
(exactly one digit to left of decimal point)!
• Alternatives to representing 1/1,000,000,000!

• Normalized: !1.0 x 10-9!
• Not normalized: !0.1 x 10-8,10.0 x 10-10 !
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Scientific Notation (in Binary)!

1.0two x 2-1!

radix (base)!“binary point”!

exponent!

• Computer arithmetic that supports it 
called floating point, because it 
represents numbers where the binary 
point is not fixed, as it is for integers!

• Declare such variable in C as float!

mantissa!
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Floating Point Representation (1/2)!
• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo!
• Multiple of Word Size (32 bits)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• S represents Sign ! !

!Exponent represents yʼs !!
!Significand represents xʼs!

• Represent numbers as small as  
2.0 x 10-38 to as large as 2.0 x 1038 !
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Floating Point Representation (2/2)!
• What if result too large? !

(> 2.0x1038 , < -2.0x1038 )!
• Overflow! " Exponent larger than represented in 8-

bit Exponent field!

• What if result too small? !
(>0 & < 2.0x10-38 , <0 & > - 2.0x10-38 )!
• Underflow! " Negative exponent larger than 

represented in 8-bit Exponent field!

• What would help reduce chances of overflow 
and/or underflow?!

0" 2x10-38" 2x1038"1"-1" -2x10-38"-2x1038"

underflow" overflow"overflow"
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Double Precision Fl. Pt. Representation!
• Next Multiple of Word Size (64 bits)!

• Double Precision (vs. Single Precision)!
• C variable declared as double!

• Represent numbers almost as small as  
2.0 x 10-308 to almost as large as 2.0 x 10308 !

• But primary advantage is greater accuracy  
due to larger significand!

0!31!
S! Exponent!

30! 20!19!
Significand!

1 bit! 11 bits! 20 bits!
Significand (contʼd)!

32 bits!

CS61CL L06 Number Representation, Floating Point(26)! Huddleston, Summer 2009 © UCB !

QUAD Precision Fl. Pt. Representation!
• Next Multiple of Word Size (128 bits)!

• Unbelievable range of numbers!
• Unbelievable precision (accuracy)!

• IEEE 754-2008, Finalized Aug 2008!
• 15 exponent bits!
• 112 significand bits (113 precision bits)!

• Oct-Precision? !
• Some have tried, no real traction so far!

• Half-Precision? !
• Yep, thatʼs for a short (16 bit)!

en.wikipedia.org/wiki/Quad_precision 
en.wikipedia.org/wiki/Half_precision 
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IEEE 754 Floating Point Standard (1/3)!
Single Precision (DP similar):!

•  Sign bit:! !1 means negative ! !!
! ! !   0 means positive!

• Significand:!
• To pack more bits, leading 1 implicit for 

normalized numbers!
• 1 + 23 bits single, 1 + 52 bits double!
• always true: 0 < Significand < 1                             

(for normalized numbers)!
• Note: reserve exponent value 0 to mean no 

implicit leading 1 (eg: 0)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
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IEEE 754 Floating Point Standard (2/3)!

• IEEE 754 uses “biased exponent” 
representation. !
• Designers wanted FP numbers to be used 
even if no FP hardware; e.g., sort records with 
FP numbers using integer compares!

• Wanted bigger (integer) exponent field to 
represent bigger numbers. !

• 2ʼs complement poses a problem (because 
negative numbers look bigger)!

• Weʼre going to see that the numbers are 
ordered EXACTLY as in sign-magnitude!

-  I.e., counting from binary odometer 00…00 up to 
11…11 goes from 0 to +MAX to -0 to -MAX to 0!
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IEEE 754 Floating Point Standard (3/3)!
• Called Biased Notation, where bias is 
number subtracted to get real number!
• IEEE 754 uses bias of 127 for single prec.!
• Subtract 127 from Exponent field to get 

actual value for exponent!
• 1023 is bias for double precision!

• Summary (single precision):!
0!31!

S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with 
exponent bias of 1023 (half, quad similar)!
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Example: Converting Binary FP to Decimal!

• Sign: 0 => positive!
• Exponent: !

• 0110 1000two = 104ten!
• Bias adjustment: 104 - 127 = -23!

• Significand:!
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22  
= 1.0 + 0.666115!

0! 0110 1000! 101 0101 0100 0011 0100 0010!

• Represents: 1.666115ten*2-23 ~ 1.986*10-7 

! ! !(about 2/10,000,000)!
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Example: Converting Decimal to FP!

1.  Denormalize: -23.40625!
2.  Convert integer part:!

23 = 16 + ( 7 = 4 + ( 3 = 2 + ( 1 ) ) )  =  101112!

3.  Convert fractional part:!
.40625 = .25 + ( .15625 = .125 + ( .03125 ) ) = .011012!

4.  Put parts together and normalize:!
10111.01101 = 1.011101101 x 24!

5.  Convert exponent:  127 + 4 = 100000112!

1! 1000 0011! 011 1011 0100 0000 0000 0000!

-2.340625 x 101!
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Understanding the Significand (1/2)!

• Method 1 (Fractions):!
• In decimal: 0.34010 ! ! ! !!
" 34010/100010 ! ! ! ! !!
" 3410/10010!

• In binary: 0.1102 !" 1102/10002 = 610/810 !!
! ! !" 112/1002 = 310/410!

• Advantage: less purely numerical, more 
thought oriented; this method usually 
helps people understand the meaning of 
the significand better!
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Understanding the Significand (2/2)!

• Method 2 (Place Values):!
• Convert from scientific notation!
• In decimal: !1.6732 = (1x100) + (6x10-1) + 
(7x10-2) + (3x10-3) + (2x10-4)!

• In binary: !1.1001 = (1x20) + (1x2-1) + 
(0x2-2) + (0x2-3) + (1x2-4)!

• Interpretation of value in each position 
extends beyond the decimal/binary point!

• Advantage: good for quickly calculating 
significand value; use this method for 
translating FP numbers!
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Precision and Accuracy!

Precision is a count of the number bits used to represent 
a value.!

Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation.!

Donʼt confuse these two terms!"

High precision permits high accuracy but doesnʼt "
guarantee it.  It is possible to have high precision"

but low accuracy. "

Example: "float pi = 3.14159…;"
"pi will be represented using all 24 bits of the "
"significant (highly precise), but is only an "

"approximation (not accurate).  "
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Representation for ± ∞!

• In FP, divide by 0 should produce ± ∞, 
not overflow.!
• Why?!

• OK to do further computations with ∞ 
E.g.,  X/0  >  Y may be a valid comparison!

• Ask math majors!

• IEEE 754 represents ± ∞!
• Most positive exponent reserved for ∞!
• Significands all zeroes!
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Representation for 0!

• Represent 0?!
• exponent all zeroes!
• significand all zeroes!
• What about sign?  Both cases valid.!
+0: 0 00000000 00000000000000000000000 
-0: 1 00000000 00000000000000000000000!
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Special Numbers!

• What have we defined so far? !
!(Single Precision)!

Exponent !Significand ! !Object!
0 ! ! !0 ! ! !0!
0 ! ! !nonzero   ???!
1-254 ! !anything ! !+/- fl. pt. #!
255 ! !0 ! ! !+/- ∞!
255 ! !nonzero   ???!

• “Waste not, want not”!
• Weʼll talk about Exp=0,255 & Sig!=0  later!
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Representation for Not a Number!

• What do I get if I calculate ! ! 
!sqrt(-4.0)or 0/0?!

• If ∞ not an error, these shouldnʼt be either!
• Called Not a Number (NaN)!

-  Exponent = all 1s (255),!
-  Significand nonzero!

• Why is this useful?!
• Hope NaNs help with debugging?!
• They contaminate: op(NaN, X) = NaN!
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Representation for Denorms (1/2)!

• Problem: Thereʼs a gap among 
representable FP numbers around 0!

• Smallest representable pos num:!
a = 1.0… 2 * 2-126 = 2-126!

• Second smallest representable pos num:!
b != 1.000……1 2 * 2-126  

= (1 + 0.00…12) * 2-126  
= (1 + 2-23) * 2-126  
= 2-126 + 2-149!

!a - 0 = 2-126!

!b - a = 2-149! a"0" +"-"
Gaps!"b"

Normalization and 
implicit 1  

is to blame!"
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• Solution:!
• We still havenʼt used Exponent=0,  
Significand nonzero!

• Denormalized number: no (implied) 
leading 1, implicit exponent = -126!

• Smallest representable pos num:!
-  A = 2-149!

• Second smallest representable pos num:!
-  b = 2-148!

0" +"-"

Representation for Denorms (2/2)!
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Special Numbers Summary!

• Reserve exponents, significands:!

Exponent Significand Object 
0 0 +/- 0 
0 nonzero +/- Denorm 

1-254 anything +/- Norm 
255 0 +/- ! 
255 nonzero NaN 
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Rounding!

• When we perform math on floating point 
numbers, we have to worry about 
rounding to fit the result in the 
significand field.!
• The FP hardware carries two extra bits 
of precision, and then round to get the 
proper value!
• Rounding also occurs when converting:!

 double to a single precision value!
 floating point number to an integer!
 integer > ___ to floating point!
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IEEE FP Rounding Modes!

•  Round towards + ∞!
•  ALWAYS round “up”: 2.001 $ 3, -2.001 $ -2!

•  Round towards - ∞!
•  ALWAYS round “down”: 1.999 $  1, -1.999 $  -2!

•  Truncate!
•  Just drop the last bits (round towards 0)!

•  Unbiased (default mode). Midway? Round to even!
•  Normal rounding, almost: 2.4 $  2, 2.6 $  3, 2.5 $  2, 3.5 $  4!
•  Round like you learned in grade school (nearest int)!
•  Except if the value is right on the borderline, in which case we round 

to the nearest EVEN number!
•  Insures fairness on calculation!
•  This way, half the time we round up on tie, the other half time we 

round down. Tends to balance out inaccuracies!

Examples in decimal (but, of course, IEEE754 in binary)"
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“And in conclusion…”!
• Floating Point lets us:!

•  Represent numbers containing both integer and fractional 
parts; makes efficient use of available bits.!

•  Store approximate values for very large and very small #s.!

•  IEEE 754 Floating Point Standard is most widely 
accepted attempt to standardize interpretation of such 
numbers (Every desktop or server computer sold 
since ~1997 follows these conventions)!

• Summary (single precision):!
0!31!

S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with 
exponent bias of 1023 (half, quad similar)!
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“And in conclusion…”!

• Reserve exponents, significands:!

• 4 Rounding modes (default: unbiased)!
• MIPS Fl ops complicated, expensive!

Exponent Significand Object 
0 0 0 
0 nonzero Denorm 

1-254 Anything +/- fl. Pt # 

255 0 +/- ! 
255 nonzero NaN 
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Bonus slides!

• These are extra slides that used to be 
included in lecture notes, but have 
been moved to this, the “bonus” area 
to serve as a supplement.!
• The slides will appear in the order they 
would have in the normal presentation!
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Numbers: positional notation!
• Number Base B " B symbols per digit:!

• Base 10 (Decimal): !0, 1, 2, 3, 4, 5, 6, 7, 8, 9  
Base   2 (Binary): !0, 1!

• Number representation: !
• d31d30 ... d1d0 is a 32 digit number!
• value = d31 % B31 + d30 % B30 + ... + d1 % B1 + d0 % B0!

• Binary: !0,1  (In binary digits called “bits”)!
• 0b11010 != 1%24 + 1%23 + 0%22  + 1%21 + 0%20  

!= 16 + 8 + 2  
!= 26!

• Here 5 digit binary # turns into a 2 digit decimal #!
• Can we find a base that converts to binary easily?!

#s often written 
0b…!
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Decimal vs. Hexadecimal vs. Binary!
Examples:!
1010 1100 0011 (binary)  
= 0xAC3!
10111 (binary)  
= 0001 0111 (binary)  
= 0x17!
0x3F9  
= 11 1111 1001 (binary)!
How do we convert between 
hex and Decimal?!

00 0  0000 
01 1  0001 
02 2  0010 
03 3  0011 
04 4  0100 
05 5  0101 
06 6  0110 
07 7  0111 
08 8  1000 
09 9  1001 
10 A  1010 
11 B  1011 
12 C  1100 
13 D  1101 
14 E  1110 
15 F  1111 

MEMORIZE!!

Examples:!
1010 1100 0011 (binary)  

= 0xAC3!
10111 (binary)  

= 0001 0111 (binary)  
= 0x17!
0x3F9  

= 11 1111 1001 (binary)!
How do we convert between 

hex and Decimal?!
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Twoʼs Complement for N=32!
  0000 ... 0000  0000  0000  0000two =  !0ten 0000 ... 0000  0000  0000  0001two =  

!1ten 0000 ... 0000  0000  0000  0010two =  !2ten . . . 
0111 ... 1111  1111  1111  1101two = ! 2,147,483,645ten 0111 ... 1111  1111  1111  1110two = ! 2,147,483,646ten 0111 ... 1111  1111  1111  1111two = ! 2,147,483,647ten 1000 ... 0000  0000  0000  0000two = !–2,147,483,648ten 1000 ... 0000  0000  0000  0001two = !–2,147,483,647ten 1000 ... 0000  0000  0000  0010two = !–2,147,483,646ten . . .  
1111 ... 1111  1111  1111  1101two = !–3ten 1111 ... 1111  1111  1111  1110two = !–2ten 1111 ... 1111  1111  1111  1111two = !–1ten!

• One zero; 1st bit called sign bit !
• 1 “extra” negative:no positive 2,147,483,648ten 
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Twoʼs comp. shortcut: Sign extension!
• Convert 2ʼs complement number rep. 

using n bits to more than n bits!
•  Simply replicate the most significant bit 

(sign bit) of smaller to fill new bits!
•  2ʼs comp. positive number has infinite 0s!
•  2ʼs comp. negative number has infinite 1s!
•  Binary representation hides leading bits;  
sign extension restores some of them!
•  16-bit -4ten to 32-bit:  !

1111 1111 1111 1100two !

1111 1111 1111 1111 1111 1111 1111 1100two!
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Preview: Signed vs. Unsigned Variables!

• Java  and C declare integers  int 
• Use twoʼs complement (signed integer)!

• Also, C declaration unsigned int 
• Declares a unsigned integer!
• Treats 32-bit number as unsigned 
integer, so most significant bit is part of 
the number, not a sign bit!

CS61CL L06 Number Representation, Floating Point(52)! Huddleston, Summer 2009 © UCB !

“Father” of the Floating point standard!

IEEE Standard 754 
for Binary Floating-

Point Arithmetic.!

www.cs.berkeley.edu/~wkahan/ 
…/ieee754status/754story.html 

Prof. Kahan!
1989!

ACM Turing!
Award Winner!!
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FP Addition!

• More difficult than with integers!
• Canʼt just add significands!
• How do we do it?!

• De-normalize to match exponents!
• Add significands to get resulting one!
• Keep the same exponent!
• Normalize (possibly changing exponent)!

• Note: If signs differ, just perform a 
subtract instead.!
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MIPS Floating Point Architecture (1/4)!

• MIPS has special instructions for 
floating point operations:!

• Single Precision: ! ! ! !!
! !add.s, sub.s, mul.s, div.s!

• Double Precision: ! ! ! !!
!add.d, sub.d, mul.d, div.d!

• These instructions are far more 
complicated than their integer 
counterparts.  They require special 
hardware and usually they can take 
much longer to compute.!
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MIPS Floating Point Architecture (2/4)!

• Problems:!
• Itʼs inefficient to have different 
instructions take vastly differing 
amounts of time.!

• Generally, a particular piece of data will 
not change from FP to int, or vice versa, 
within a program.  So only one type of 
instruction will be used on it.!

• Some programs do no floating point 
calculations!

• It takes lots of hardware relative to 
integers to do Floating Point fast!
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MIPS Floating Point Architecture (3/4)!

• 1990 Solution: Make a completely 
separate chip that handles only FP.!
• Coprocessor 1: FP chip!

• contains 32 32-bit registers: $f0, $f1, …!
• most registers specified in .s and .d 
instruction refer to this set!

• separate load and store: lwc1 and swc1 
(“load word coprocessor 1”, “store …”) 

• Double Precision: by convention, even/
odd pair contain one DP FP number: 
$f0/$f1, $f2/$f3, … , $f30/$f31 
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MIPS Floating Point Architecture (4/4)!

• 1990 Computer actually contains 
multiple separate chips:!

• Processor: handles all the normal stuff!
• Coprocessor 1: handles FP and only FP; !
• more coprocessors?… Yes, later!
• Today, cheap chips may leave out FP HW!

• Instructions to move data between 
main processor and coprocessors:!
• mfc0, mtc0, mfc1, mtc1, etc.!

• Appendix pages A-70 to A-74 contain 
many, many more FP operations.!
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Example: Representing 1/3 in MIPS!

• 1/3 !
= 0.33333…10!

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + … !
= 1/4 + 1/16 + 1/64 + 1/256 +  …!
= 2-2 + 2-4 + 2-6 + 2-8 + …!
= 0.0101010101… 2 * 20!

= 1.0101010101… 2 * 2-2!

• Sign: 0!
• Exponent = -2 + 127 = 125 = 01111101!
• Significand = 0101010101…!

0" 0111 1101" 0101 0101 0101 0101 0101 010"
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Casting floats to ints and vice versa!

(int) floating_point_expression!
Coerces and converts it to the nearest 
integer (C uses truncation)!
i = (int) (3.14159 * f);!

(float) integer_expression!
converts integer to nearest floating point!
f = f + (float) i;!
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int $  float $  int!

• Will not always print “true”!
• Most large values of integers donʼt 
have exact floating point 
representations!!
• What about double?!

if (i == (int)((float) i)) {"
 printf(“true”);"
}"
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float $  int $  float!

• Will not always print “true”!
• Small floating point numbers (<1) 
donʼt have integer representations!
• For other numbers, rounding errors!

if (f == (float)((int) f)) {"
 printf(“true”);"
}"
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Floating Point Fallacy!

• FP add associative: FALSE!!
• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0!
• x + (y + z) != –1.5x1038 + (1.5x1038 + 1.0)!
! != –1.5x1038 + (1.5x1038) = 0.0!

• (x + y) + z != (–1.5x1038 + 1.5x1038) + 1.0!
! != (0.0) + 1.0 = 1.0!

• Therefore, Floating Point add is not 
associative!!

• Why? FP result approximates real result!!
• This example: 1.5 x 1038 is so much larger 
than 1.0 that 1.5 x 1038 + 1.0 in floating point 
representation is still 1.5 x 1038!


