
CS61CL L03 MIPS II: Procedures, Representation (1)! Huddleston, Summer 2009 © UCB !

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c  
CS61CL : Machine Structures 

Lecture #4 – MIPS I: Registers, Memory, Decisions 

2009-06-30!

CS61CL L03 MIPS II: Procedures, Representation (2)! Huddleston, Summer 2009 © UCB !

Administrivia!

• Final exam @ 9am instead of 9:30!
• hw1, hw2, hw3 will be graded this week!

• Your grade will be emailed by autograder!

CS61CL L03 MIPS II: Procedures, Representation (3)! Huddleston, Summer 2009 © UCB !

Review!
• Flow Control!

• j Label!
• beq $t0 $t1 Label!
• bne $s0 $s1 Label!
• slt $t0 $t1 $t2!

• R-type instructions!
• add $s0 $s1 $s2!
• sub $t0 $t1 $t2!

• Immediates!
• addi $s0 $s1 24!

• Memory!
•  BYTE addressed!

• 1 word = 4 bytes = 32bits!
• lw $t0 4($s1) # 4 + $s1 must be divisible by 4!
• sb $t1 0($s2)!

CS61CL L03 MIPS II: Procedures, Representation (4)! Huddleston, Summer 2009 © UCB !

Review!

• We can implement < using ! !
!slt $t0 $s0 $s1
 bne $t0 $0 True!

• How do we implement >, ! and " ?!
• We could add 3 more instructions, but:!

• MIPS goal: Simpler is Better!

• Can we implement " in one or more
instructions using just slt and
branches? (a " b) is !(a < b)!

• What about >? (a > b) is (b < a)!
• What about !? (a ! b) is !(b < a)!

CS61CL L03 MIPS II: Procedures, Representation (5)! Huddleston, Summer 2009 © UCB !

C functions!

main() {
int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){
int product = 0;
while (mlier > 0) {
 product = product + mcand;
 mlier = mlier -1; }
return product;
}

!"#$%&'()*+#$&)'%+,-$%
.)+/&01*2/*)3*#++1*%%

411/%$*#.4%)(5!

!"#$%&'-$*,.$&)'-%.#'%%
#..)+/0&-"%$"&-5!

CS61CL L03 MIPS II: Procedures, Representation (6)! Huddleston, Summer 2009 © UCB !

Function Call Bookkeeping!

• Registers play a major role in
keeping track of information for
function calls.!
• Register conventions:!

• Return address !$ra!
• Arguments ! !$a0, $a1, $a2, $a3!
• Return value !$v0, $v1!
• Local variables !$s0, $s1, … , $s7!

• The stack is also used; more later.!

CS61CL L03 MIPS II: Procedures, Representation (7)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (1/4)!

• Syntax for jal (jump and link) is same
as for j (jump):!
! !jal label!

•  jal should really be called laj for  
“link and jump”:!

• Step 1 (link): Save address of next
instruction into $ra!

-  Why next instruction? Why not current one?!
• Step 2 (jump): Jump to the given label!

CS61CL L03 MIPS II: Procedures, Representation (8)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (2/4)!

• Syntax for jr (jump register):!
! !jr register!

• Instead of providing a label to jump to,
the jr instruction provides a register
which contains an address to jump to.!
• Very useful for function calls:!

• jal stores return address in register ($ra)!
• jr $ra jumps back to that address!

CS61CL L03 MIPS II: Procedures, Representation (9)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (3/4)!

 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

 return x+y;
}

 address (shown in decimal)  

!1000
1004
1008
1012

 2000
2004

C!

6%
7%
8%
9%

7'%6789:%#00%&'-$*,.$&)'-%#*1%;%
<=$1-:%#'>%-$)*1>%&'%+1+)*=%
?,-$%0&41%>#$#@%9)%"1*1%A1%

-")A%$"1%#>>*1--1-%)(%A"1*1%
$"1%/*)3*#+-%#*1%-$)*1>@%

CS61CL L03 MIPS II: Procedures, Representation (10)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (4/4)!

 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

 return x+y;
}

 address (shown in decimal)  

!1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 jal sum #$ra = 1012, jump to sum
1012 ...

 2000 sum: add $v0,$a0,$a1
2004 jr $ra #nstruction

C!

6%
7%
8%
9%

CS61CL L03 MIPS II: Procedures, Representation (11)! Huddleston, Summer 2009 © UCB !

Nested Procedures!

 int sumSquare(int x, int y) {
 return mult(x,x)+ y;

}

• Something called sumSquare, now
sumSquare is calling mult.!
• So thereʼs a value in $ra that
sumSquare wants to jump back to, but
this will be overwritten by the call to
mult.!
• Need to save sumSquare return address
before call to mult.!

CS61CL L03 MIPS II: Procedures, Representation (12)! Huddleston, Summer 2009 © UCB !

Using the Stack (1/2)!

• So we have a register $sp which
always points to the last used space in
the stack.!
• To use stack, we decrement this
pointer by the amount of space we
need and then fill it with info.!
• So, how do we compile this?!

int sumSquare(int x, int y) {
 return mult(x,x)+ y;
}!

CS61CL L03 MIPS II: Procedures, Representation (13)! Huddleston, Summer 2009 © UCB !

Using the Stack (2/2)!

•  Hand-compile
sumSquare:
 addi $sp,$sp,-8 # space on stack
 sw $ra, 4($sp) # save ret addr
 sw $a1, 0($sp) # save y

 add $a1,$a0,$zero # mult(x,x)
 jal mult # call mult

 lw $a1, 0($sp) # restore y
 add $v0,$v0,$a1 # mult()+y

 lw $ra, 4($sp) # get ret addr
 addi $sp,$sp,8 # restore stack
 jr $ra

int sumSquare(int x, int y) {
 return mult(x,x)+ y;

}

B/,-"C%

B/)/C%

CS61CL L03 MIPS II: Procedures, Representation (14)! Huddleston, Summer 2009 © UCB !

Basic Structure of a Function!

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

 ...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

!"#$%&'()

%+,))))))))))))D.#00%)$"1%(,'.$&)'-EF%

"#!

$%$&"'!

CS61CL L03 MIPS II: Procedures, Representation (15)! Huddleston, Summer 2009 © UCB !

Rules for Procedures!

• Called with a jal instruction,  
returns with a jr $ra!
• Accepts up to 4 arguments in 
$a0, $a1, $a2 and $a3!
• Return value is always in $v0  
(and if necessary in $v1)!
• Must follow register conventions !
! !So what are they?!

CS61CL L03 MIPS II: Procedures, Representation (16)! Huddleston, Summer 2009 © UCB !

• CalleR: the calling function!
• CalleE: the function being called!
• When callee returns from executing,
the caller needs to know which
registers may have changed and which
are guaranteed to be unchanged.!
• Register Conventions: A set of
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.!

Register Conventions (1/4)!

CS61CL L03 MIPS II: Procedures, Representation (17)! Huddleston, Summer 2009 © UCB !

• $0: No Change. Always 0.!
• $s0-$s7: Restore if you change. Very

important, thatʼs why theyʼre called saved
registers. If the callee changes these in any
way, it must restore the original values before
returning.!
• $sp: Restore if you change. The stack pointer

must point to the same place before and after
the jal call, or else the caller wonʼt be able to
restore values from the stack.!

Register Conventions (2/4) – saved!

CS61CL L03 MIPS II: Procedures, Representation (18)! Huddleston, Summer 2009 © UCB !

• $ra: Can Change. The jal call itself will
change this register. Caller needs to save
on stack if nested call. !

• $v0-$v1: Can Change. These will contain
the new returned values. !

• $a0-$a3: Can change. These are volatile
argument registers. Caller needs to save if
they are needed after the call.!

• $t0-$t9: Can change. Thatʼs why theyʼre
called temporary: any procedure may
change them at any time. Caller needs to
save if theyʼll need them afterwards. !

Register Conventions (3/4) – volatile!

CS61CL L03 MIPS II: Procedures, Representation (19)! Huddleston, Summer 2009 © UCB !

• What do these conventions mean?!
• If function R calls function E, then function
R must save any temporary registers that it
may be using onto the stack before making
a jal call.!

• Function E must save any S (saved)
registers it intends to use before
clobbering their values and restore the
contents before returning!

• Remember: caller/callee need to save
only temporary/saved registers they are
using, not all registers.!

Register Conventions (4/4)!

CS61CL L03 MIPS II: Procedures, Representation (20)! Huddleston, Summer 2009 © UCB !

Register Conventsions Summary!

 The constant 0 ! !$0 ! !$zero ! !n/a  
Used by Assembler !$1 ! !$at ! !n/a 
Return Values ! !$2-$3 ! !$v0-$v1 !no 
Arguments ! !$4-$7 ! !$a0-$a3 !no 
Temporary ! !$8-$15 !$t0-$t7 !no 
Saved ! ! !$16-$23 !$s0-$s7 !yes  
More Temporary ! !$24-$25 !$t8-$t9 !no 
Used by Kernel ! !$26-27 !$k0-$k1 !n/a 
Global Pointer ! !$28 ! !$gp ! !yes  
Stack Pointer ! !$29 ! !$sp ! !yes  
Frame Pointer ! !$30 ! !$fp ! !yes  
Return Address ! !$31 ! !$ra ! !no!

(From COD green insert) 
Use names for registers -- code is clearer!!

Preserved?!

CS61CL L03 MIPS II: Procedures, Representation (21)! Huddleston, Summer 2009 © UCB !

“New” Registers!

• $at: may be used by the assembler at
any time; unsafe to use!
• $k0-$k1: may be used by the OS at
any time; unsafe to use!
• $gp, $fp: donʼt worry about them!
• Note: Feel free to read up on $gp and
$fp in Appendix A, but you can write
perfectly good MIPS code without
them.!

CS61CL L03 MIPS II: Procedures, Representation (22)! Huddleston, Summer 2009 © UCB !

High Level Language
Program (e.g., C)!

Assembly Language
Program (e.g.,MIPS)!

Machine Language
Program (MIPS)!

Hardware Architecture Description
(e.g., block diagrams) "

Compiler!

Assembler!

Machine
Interpretation!

 temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $t0, 0($s2)
lw $t1, 4($s2)
sw $t1, 0($s2)
sw $t0, 4($s2)
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111 !

Logic Circuit Description (Circuit
Schematic Diagrams)!

Architecture
Implementation!

Register File"

AL
U"

61C Levels of Representation (abstractions)!

CS61CL L03 MIPS II: Procedures, Representation (23)! Huddleston, Summer 2009 © UCB !

Instructions as Numbers (1/2)!

• Currently all data we work with is in
words (32-bit blocks):!

• Each register is a word.!
• lw and sw both access memory one word
at a time.!

• So how do we represent instructions?!
• Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0” is
meaningless.!

• MIPS wants simplicity: since data is in
words, make instructions be words too!

CS61CL L03 MIPS II: Procedures, Representation (24)! Huddleston, Summer 2009 © UCB !

Instructions as Numbers (2/2)!

• One word is 32 bits, so divide
instruction word into “fields”.!
• Each field tells processor something
about instruction.!
• We could define different fields for
each instruction, but MIPS is based on
simplicity, so define 3 basic types of
instruction formats:!

• R-format!
• I-format!
• J-format!

CS61CL L03 MIPS II: Procedures, Representation (25)! Huddleston, Summer 2009 © UCB !

Instruction Formats!

• I-format: used for instructions with
immediates, lw and sw (since offset
counts as an immediate), and
branches (beq and bne), !

• (but not the shift instructions; later)!

• J-format: used for j and jal !
• R-format: used for all other
instructions!
• It will soon become clear why the
instructions have been partitioned in
this way.!

CS61CL L03 MIPS II: Procedures, Representation (26)! Huddleston, Summer 2009 © UCB !

R-Format Instructions (1/5)!

• Define “fields” of the following
number of bits each: 6 + 5 + 5 + 5 + 5 +
6 = 32!

• For simplicity, each field has a name:!

• Important: On these slides and in book,
each field is viewed as a 5- or 6-bit unsigned
integer, not as part of a 32-bit integer.!

• Consequence: 5-bit fields can represent any
number 0-31, while 6-bit fields can represent
any number 0-63.!

6" 5" 5" 5" 6"5"

opcode" rs" rt" rd" funct"shamt"

CS61CL L03 MIPS II: Procedures, Representation (27)! Huddleston, Summer 2009 © UCB !

R-Format Instructions (2/5)!

• What do these field integer values tell
us?!
• opcode: partially specifies what
instruction it is !

-  Note: This number is equal to 0 for all R-
Format instructions.!

• funct: combined with opcode, this
number exactly specifies the instruction!

• Question: Why arenʼt opcode and
funct a single 12-bit field?!

• Weʼll answer this later.!

CS61CL L03 MIPS II: Procedures, Representation (28)! Huddleston, Summer 2009 © UCB !

• More fields:!
• rs (Source Register): generally used to
specify register containing first operand!
• rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)!
• rd (Destination Register): generally used
to specify register which will receive
result of computation!

R-Format Instructions (3/5)!

CS61CL L03 MIPS II: Procedures, Representation (29)! Huddleston, Summer 2009 © UCB !

• Notes about register fields:!
• Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.!

• The word “generally” was used because
there are exceptions that weʼll see later.
E.g.,!
-  mult and div have nothing important in the
rd field since the dest registers are hi and lo

-  mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction (p. 264 P&H)!

R-Format Instructions (4/5)!

CS61CL L03 MIPS II: Procedures, Representation (30)! Huddleston, Summer 2009 © UCB !

• Final field:!
• shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).!

• This field is set to 0 in all but the shift
instructions.!

• For a detailed description of field
usage for each instruction, see green
insert in COD!

R-Format Instructions (5/5)!

CS61CL L03 MIPS II: Procedures, Representation (31)! Huddleston, Summer 2009 © UCB !

• MIPS Instruction:!
add $8,$9,$10!

opcode = 0 (look up in table in book)!
funct = 32 (look up in table in book)!
rd = 8 (destination)
rs = 9 (first operand)!
rt = 10 (second operand)!
shamt = 0 (not a shift)!

R-Format Example (1/2)!

CS61CL L03 MIPS II: Procedures, Representation (32)! Huddleston, Summer 2009 © UCB !

• MIPS Instruction:!
add $8,$9,$10
Decimal number per field representation:!

Binary number per field representation:!

hex representation: ! 012A 4020hex!

decimal representation: 19,546,144ten!

Called a Machine Language Instruction!

0" 9" 10" 8" 32"0"

000000" 01001" 01010" 01000" 100000"00000"
"1G!

R-Format Example (2/2)!

CS61CL L03 MIPS II: Procedures, Representation (33)! Huddleston, Summer 2009 © UCB !

I-Format Instructions (1/4)!

• What about instructions with
immediates?!

• 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this!

• Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise!

• Define new instruction format that is
partially consistent with R-format:!

• First notice that, if instruction has
immediate, then it uses at most 2
registers.!

CS61CL L03 MIPS II: Procedures, Representation (34)! Huddleston, Summer 2009 © UCB !

• Define “fields” of the following number
of bits each: 6 + 5 + 5 + 16 = 32 bits!

• Again, each field has a name:!

• Key Concept: Only one field is inconsistent
with R-format. Most importantly, opcode is
still in same location.!

6" 5" 5" 16"

opcode" rs" rt" immediate"

I-Format Instructions (2/4)!

CS61CL L03 MIPS II: Procedures, Representation (35)! Huddleston, Summer 2009 © UCB !

• What do these fields mean?!
• opcode: same as before except that, since thereʼs

no funct field, opcode uniquely specifies an
instruction in I-format!

• This also answers question of why R-format has
two 6-bit fields to identify instruction instead of a
single 12-bit field: in order to be consistent as
possible with other formats while leaving as
much space as possible for immediate field.!

• rs: specifies a register operand (if there is one)!
• rt: specifies register which will receive result of

computation (this is why itʼs called the target
register “rt”) or other operand for some
instructions.!

I-Format Instructions (3/4)!

CS61CL L03 MIPS II: Procedures, Representation (36)! Huddleston, Summer 2009 © UCB !

• The Immediate Field:!
• addi, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, itʼs
treated as a signed integer.!

• 16 bits ! can be used to represent
immediate up to 216 different values!

• This is large enough to handle the offset
in a typical lw or sw, plus a vast majority
of values that will be used in the slti
instruction.!

• If immediate is larger, must be split into
multiple instructions (more on this in the
bonus slides)!

I-Format Instructions (4/4)!

CS61CL L03 MIPS II: Procedures, Representation (37)! Huddleston, Summer 2009 © UCB !

• MIPS Instruction:!
addi $21,$22, 50!

opcode = 8 (look up in table in book)!
rs = 22 (register containing operand)!
rt = 21 (target register)!
immediate = 50 (the immediate)!

I-Format Example (1/2)!

CS61CL L03 MIPS II: Procedures, Representation (38)! Huddleston, Summer 2009 © UCB !

• MIPS Instruction:!
addi $21,$22,-50!

8" 22" 21" -50"

001000" 10110" 10101" 1111111111001110"

H1.&+#02I10>%*1/*1-1'$#$&)'J%

K&'#*=2I10>%*1/*1-1'$#$&)'J%

"1G#>1.&+#0%*1/*1-1'$#$&)'J%22D5 FFCE"1G%

>1.&+#0%*1/*1-1'$#$&)'J% %%%%%%%584,449,998$1'%

I-Format Example (2/2)!

CS61CL L03 MIPS II: Procedures, Representation (39)! Huddleston, Summer 2009 © UCB !

Branches: PC-Relative Addressing (1/5)!

• Use I-Format!

• opcode specifies beq or bne
• rs and rt specify registers to compare!
• What can immediate specify?!

• immediate is only 16 bits!
• PC (Program Counter) has byte address of

current instruction being executed;  
32-bit pointer to memory !

• So immediate cannot specify entire address to
branch to.!

opcode" rs" rt" immediate"

CS61CL L03 MIPS II: Procedures, Representation (40)! Huddleston, Summer 2009 © UCB !

• How do we typically use branches?!
• Answer: if-else, while, for!
• Loops are generally small: usually up to 50
instructions!

• Function calls and unconditional jumps are
done using jump instructions (j and jal),
not the branches.!

• Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount!

Branches: PC-Relative Addressing (2/5)!

CS61CL L03 MIPS II: Procedures, Representation (41)! Huddleston, Summer 2009 © UCB !

• Solution to branches in a 32-bit
instruction: PC-Relative Addressing!
• Let the 16-bit immediate field be an
integer to be added to the PC if we
take the branch.!
• Now we can branch ± 215 bytes from
the PC, which should be enough to
cover almost any loop.!
• Any ideas to further optimize this?!

Branches: PC-Relative Addressing (3/5)!

CS61CL L03 MIPS II: Procedures, Representation (42)! Huddleston, Summer 2009 © UCB !

• Note: Instructions are words, so
theyʼre word aligned (byte address is
always a multiple of 4, which means it
ends with 00 in binary).!

• So the number of bytes to add to the PC
will always be a multiple of 4.!

• So specify the immediate in words.!

• Now, we can branch ± 215 words from
the PC (or ± 217 bytes), so we can
handle loops 4 times as large.!

Branches: PC-Relative Addressing (4/5)!

CS61CL L03 MIPS II: Procedures, Representation (43)! Huddleston, Summer 2009 © UCB !

• Branch Calculation:!
• If we donʼt take the branch:!
! !PC = PC + 4 # (address of next instruction)!
• If we do take the branch:!
! !PC = (PC + 4) + (immediate * 4)!
• Observations!

-  Immediate field specifies the number of words
to jump, which is simply the number of
instructions to jump.!

-  Immediate field can be positive or negative.!
-  Due to hardware, add immediate to (PC+4), not

to PC; will be clearer why later in course!

Branches: PC-Relative Addressing (5/5)!

CS61CL L03 MIPS II: Procedures, Representation (44)! Huddleston, Summer 2009 © UCB !

• MIPS Code:!
Loop: beq $9,$0,End
 addu $8,$8,$10
 addiu $9,$9,-1
 j Loop
End:!

• beq branch is I-Format:!
opcode = 4 (look up in table)!
rs = 9 (first operand)!
rt = 0 (second operand)!
immediate = ???!

Branch Example (1/3)!

CS61CL L03 MIPS II: Procedures, Representation (45)! Huddleston, Summer 2009 © UCB !

• MIPS Code:!
Loop: beq $9,$0,End
 addu $8,$8,$10
 addiu $9,$9,-1
 j Loop
End:!

• immediate Field:!
• Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch.!

• In this case, immediate = 3!

Branch Example (2/3)!

CS61CL L03 MIPS II: Procedures, Representation (46)! Huddleston, Summer 2009 © UCB !

• MIPS Code:!
Loop: beq $9,$0,End
 addu $8,$8,$10
 addiu $9,$9,-1
 j Loop
End:!

4" 9" 0" 3"

decimal representation:

binary representation:

000100" 01001" 00000" 0000000000000011"

Branch Example (3/3)!

CS61CL L03 MIPS II: Procedures, Representation (47)! Huddleston, Summer 2009 © UCB !

• For branches, we assumed that we
wonʼt want to branch too far, so we
can specify change in PC.!
• For general jumps (j and jal), we may
jump to anywhere in memory.!
• Ideally, we could specify a 32-bit
memory address to jump to.!
• Unfortunately, we canʼt fit both a 6-bit
opcode and a 32-bit address into a
single 32-bit word, so we compromise.!

J-Format Instructions (1/5)!

CS61CL L03 MIPS II: Procedures, Representation (48)! Huddleston, Summer 2009 © UCB !

J-Format Instructions (2/5)!

• Define two “fields” of these bit widths:!

• As usual, each field has a name:!

• Key Concepts!
• Keep opcode field identical to R-format
and I-format for consistency.!

• Collapse all other fields to make room for
large target address.!

6 bits" 26 bits"

opcode" target address"

CS61CL L03 MIPS II: Procedures, Representation (49)! Huddleston, Summer 2009 © UCB !

J-Format Instructions (3/5)!

• For now, we can specify 26 bits of the
32-bit bit address.!
• Optimization:!

• Note that, just like with branches, jumps
will only jump to word aligned addresses,
so last two bits are always 00 (in binary).!

• So letʼs just take this for granted and not
even specify them.!

CS61CL L03 MIPS II: Procedures, Representation (50)! Huddleston, Summer 2009 © UCB !

• Now specify 28 bits of a 32-bit address!
• Where do we get the other 4 bits?!

• By definition, take the 4 highest order bits
from the PC.!

• Technically, this means that we cannot
jump to anywhere in memory, but itʼs
adequate 99.9999…% of the time, since
programs arenʼt that long !

-  only if straddle a 256 MB boundary!
• If we absolutely need to specify a 32-bit
address, we can always put it in a register
and use the jr instruction.!

J-Format Instructions (4/5)!

CS61CL L03 MIPS II: Procedures, Representation (51)! Huddleston, Summer 2009 © UCB !

• Summary:!
• New PC = { PC[31..28], target address, 00 }!

• Understand where each part came from!!
• Note: { , , } means concatenation  
{ 4 bits , 26 bits , 2 bits } = 32 bit address!

• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100!

• Note: Book uses ||!

J-Format Instructions (5/5)!

CS61CL L03 MIPS II: Procedures, Representation (52)! Huddleston, Summer 2009 © UCB !

“And in Conclusion…”!

• Functions called with jal, return with jr $ra.!
• The stack is your friend: Use it to save

anything you need. Just leave it the way you
found it!!
• Instructions we know so far…!

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, lb, sb!
Decision: beq, bne, slt, slti, sltu, sltiu!
Unconditional Branches (Jumps): j, jal, jr!

• Registers we know so far!
• All of them!!

CS61CL L03 MIPS II: Procedures, Representation (53)! Huddleston, Summer 2009 © UCB !

• MIPS Machine Language Instruction:  
32 bits representing a single instruction 

• Branches use PC-relative addressing,
Jumps use absolute addressing.!
• Disassembly is simple and starts by
decoding opcode field. (more in a week)!

opcode" rs" rt" immediate"
opcode" rs" rt" rd" funct"shamt"R

I
J target address!opcode!

In conclusion!

CS61CL L03 MIPS II: Procedures, Representation (54)! Huddleston, Summer 2009 © UCB !

Bonus slides!

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!
• The slides will appear in the order they
would have in the normal presentation!

CS61CL L03 MIPS II: Procedures, Representation (55)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (4/6)!

• Single instruction to jump and save return
address: jump and link (jal)!
• Before:
 1008 addi $ra,$zero,1016 #$ra=1016
 1012 j sum #goto sum
 1016 ...
• After:
 1008 jal sum # $ra=1012,goto sum
• Why have a jal? !

• Make the common case fast: function calls very
common. !

• Donʼt have to know where code is in memory with
jal!!

CS61CL L03 MIPS II: Procedures, Representation (56)! Huddleston, Summer 2009 © UCB !

Instruction Support for Functions (3/6)!

 ... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

 return x+y;
}

 2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

• L,1-$&)'J%!"=%,-1%jr%"1*15%!"=%')$%,-1%j5%

• M'-A1*J%sum%+&3"$%<1%.#001>%<=%+#'=%/0#.1-:%-)%A1%.#'N$%
1$,'%$)%#%IG1>%/0#.1@%O"1%.#00&'3%/*).%$)%sum%+,-$%<1%

#<01%$)%-#=%B*1$,*'%"1*1C%-)+1")A@%

C!

6%
7%
8%
9%

CS61CL L03 MIPS II: Procedures, Representation (57)! Huddleston, Summer 2009 © UCB !

Steps for Making a Procedure Call!

1.  Save necessary values onto stack.!
2.  Assign argument(s), if any.!
3.  jal call!
4.  Restore values from stack.!

CS61CL L03 MIPS II: Procedures, Representation (58)! Huddleston, Summer 2009 © UCB !

Nested Procedures (2/2)!

• In general, may need to save some other
info in addition to $ra.!
• When a C program is run, there are 3
important memory areas allocated:!

• Static: Variables declared once per
program, cease to exist only after
execution completes. E.g., C globals!

• Heap: Variables declared dynamically via
malloc

• Stack: Space to be used by procedure
during execution; this is where we can save
register values!

CS61CL L03 MIPS II: Procedures, Representation (59)! Huddleston, Summer 2009 © UCB !

C memory Allocation review!

P%

!"M>>*1--%

Q)>1% 8*)3*#+%

9$#$&.%
R#*&#<01-%>1.0#*1>%)'.1%/1*%%

/*)3*#+S%1@3@:%30)<#0-%

T1#/%
UG/0&.&$0=%.*1#$1>%-/#.1:%%

&@1@:%malloc()

9$#.4%
9/#.1%()*%-#V1>%%

/*).1>,*1%&'()*+#$&)'%$sp
-$#.4%

/)&'$1*%

CS61CL L03 MIPS II: Procedures, Representation (60)! Huddleston, Summer 2009 © UCB !

• Parents (main) leaving for weekend!
• They (caller) give keys to the house to
kid (callee) with the rules (calling
conventions):!

• You can trash the temporary room(s), like
the den and basement (registers) if you
want, we donʼt care about it!

• BUT youʼd better leave the rooms
(registers) that we want to save for the
guests untouched. “these rooms better
look the same when we return!”!

• Who hasnʼt heard this in their life?!

Parents leaving for weekend analogy (1/5)!

CS61CL L03 MIPS II: Procedures, Representation (61)! Huddleston, Summer 2009 © UCB !

• Kid now “owns” rooms (registers)!
• Kid wants to use the saved rooms for
a wild, wild party (computation)!
• What does kid (callee) do?!

• Kid takes what was in these rooms and
puts them in the garage (memory)!

• Kid throws the party, trashes everything
(except garage, who ever goes in there?)!

• Kid restores the rooms the parents
wanted saved after the party by replacing
the items from the garage (memory) back
into those saved rooms!

Parents leaving for weekend analogy (2/5)!

CS61CL L03 MIPS II: Procedures, Representation (62)! Huddleston, Summer 2009 © UCB !

• Same scenario, except before parents
return and kid replaces saved rooms…!
• Kid (callee) has left valuable stuff
(data) all over.!

• Kidʼs friend (another callee) wants the
house for a party when the kid is away!

• Kid knows that friend might trash the
place destroying valuable stuff!!

• Kid remembers rule parents taught and
now becomes the “heavy” (caller),
instructing friend (callee) on good rules
(conventions) of house.!

Parents leaving for weekend analogy (3/5)!

CS61CL L03 MIPS II: Procedures, Representation (63)! Huddleston, Summer 2009 © UCB !

• If kid had data in temporary rooms
(which were going to be trashed), there
are three options:!

• Move items directly to garage (memory)!
• Move items to saved rooms whose
contents have already been moved to the
garage (memory) !

• Optimize lifestyle (code) so that the amount
youʼve got to shlep stuff back and forth
from garage (memory) is minimized.!

-  Mantra: “Minimize register footprint”!

• Otherwise: “Dude, whereʼs my data?!”!

Parents leaving for weekend analogy (4/5)!

CS61CL L03 MIPS II: Procedures, Representation (64)! Huddleston, Summer 2009 © UCB !

• Friend now “owns” rooms (registers)!
• Friend wants to use the saved rooms for
a wild, wild party (computation)!
• What does friend (callee) do?!

• Friend takes what was in these rooms and
puts them in the garage (memory)!

• Friend throws the party, trashes everything
(except garage)!

• Friend restores the rooms the kid wanted
saved after the party by replacing the items
from the garage (memory) back into those
saved rooms!

Parents leaving for weekend analogy (5/5)!

CS61CL L03 MIPS II: Procedures, Representation (65)! Huddleston, Summer 2009 © UCB !

Example: Fibonacci Numbers 1/8!

• The Fibonacci numbers are defined as
follows: F(n) = F(n – 1) + F(n – 2),  
F(0) and F(1) are defined to be 1!
• In scheme, this could be written:!
(define (Fib n)
(cond !((= n 0) 1)  
 ((= n 1) 1)  
 (else (+!(Fib (- n 1))  
 (Fib (- n 2)))))!

CS61CL L03 MIPS II: Procedures, Representation (66)! Huddleston, Summer 2009 © UCB !

Example: Fibonacci Numbers 2/8!

• Rewriting this in C we have:!

int fib(int n) {! ! ! !
if(n == 0) { return 1; } ! !
if(n == 1) { return 1; } ! !
return (fib(n - 1) + fib(n - 2));!
}!

CS61CL L03 MIPS II: Procedures, Representation (67)! Huddleston, Summer 2009 © UCB !

Example: Fibonacci Numbers 3/8!

• Now, letʼs translate this to MIPS!!
• You will need space for three words
on the stack!
• The function will use one $s register,
$s0

• Write the Prologue:
addi $sp, $sp, -12 #Space for three words

sw $ra, 8($sp) # Save return address

sw $s0, 4($sp) # Save s0

CS61CL L03 MIPS II: Procedures, Representation (68)! Huddleston, Summer 2009 © UCB !

fin:

lw $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

Restore $s0!
Restore return address!
Pop the stack frame!
Return to caller!

( W)A%A*&$1%$"1%U/&0)3,1J%

Example: Fibonacci Numbers 4/8!

CS61CL L03 MIPS II: Procedures, Representation (69)! Huddleston, Summer 2009 © UCB !

addi $v0, $zero, 1

beq $a0, $zero, fin

addi $t0, $zero, 1

beq $a0, $t0, fin

Continued on next slide. . .

$v0 = 1!
!
$t0 = 1!
#!

( X&'#00=:%A*&$1%$"1%<)>=@%%O"1%Q%.)>1%&-%<10)A@%%9$#*$%<=%
$*#'-0#$&'3%$"1%0&'1-%&'>&.#$1>%&'%$"1%.)++1'$-%

int fib(int n) { ! ! ! ! if
(n == 0) { return 1; } /*Translate Me!*/
if(n == 1) { return 1; } /*Translate Me!*/

return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 5/8!

CS61CL L03 MIPS II: Procedures, Representation (70)! Huddleston, Summer 2009 © UCB !

$a0 = n - 1!
Need $a0 after jal!
fib(n - 1)!
restore $a0!
$a0 = n - 2!

addi $a0, $a0, -1

sw $a0, 0($sp)

jal fib

lw $a0, 0($sp)

addi $a0, $a0, -1

( M0+)-$%$"1*1:%<,$%<1%.#*1(,0:%$"&-%/#*$%&-%$*&.4=Y%

int fib(int n) {  
 . . .  

 return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 6/8!

CS61CL L03 MIPS II: Procedures, Representation (71)! Huddleston, Summer 2009 © UCB !

add $s0, $v0, $zero

jal fib

add $v0, $v0, $s0

To the epilogue and beyond. . .

Place fib(n – 1)!
somewhere it wonʼt get!
clobbered!
fib(n - 2) !
$v0 = fib(n-1) + fib(n-2)!

( Z1+1+<1*%$"#$%[VP%&-%.#001*%-#V1>Y%

int fib(int n) {  
 . . .  

 return (fib(n - 1) + fib(n - 2));  
}!

Example: Fibonacci Numbers 7/8!

CS61CL L03 MIPS II: Procedures, Representation (72)! Huddleston, Summer 2009 © UCB !

( T1*1N-%$"1%.)+/01$1%.)>1%()*%*1(1*1'.1J%

Example: Fibonacci Numbers 8/8!

fib: addi $sp, $sp, -12

 sw $ra, 8($sp)

 sw $s0, 4($sp)

 addi $v0, $zero, 1

 beq $a0, $zero, fin

 addi $t0, $zero, 1

 beq $a0, $t0, fin

 addi $a0, $a0, -1

 sw $a0, 0($sp)

 jal fib

 lw $a0, 0($sp)

 addi $a0, $a0, -1

 add $s0, $v0, $zero

 jal fib

 add $v0, $v0, $s0

fin: lw $s0, 4($sp)

 lw $ra, 8($sp)

 addi $sp, $sp, 12

 jr $ra

CS61CL L03 MIPS II: Procedures, Representation (73)! Huddleston, Summer 2009 © UCB !

Bonus Example: Compile This (1/5)!

main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ...

}

int mult (int mcand, int mlier){
int product;

 product = 0;
while (mlier > 0) {
 product += mcand;
 mlier -= 1; }
return product;
}

CS61CL L03 MIPS II: Procedures, Representation (74)! Huddleston, Summer 2009 © UCB !

Bonus Example: Compile This (2/5)!

__start:

...

add $a0,$s1,$0 # arg0 = j
add $a1,$s2,$0 # arg1 = k
jal mult # call mult
add $s0,$v0,$0 # i = mult()
...

 add $a0,$s0,$0 # arg0 = i
add $a1,$s0,$0 # arg1 = i
jal mult # call mult
add $s3,$v0,$0 # m = mult()

...!
 j __exit!

main() {
int i,j,k,m; /* i-m:$s0-$s3 */

...
i = mult(j,k); ...
m = mult(i,i); ... }

CS61CL L03 MIPS II: Procedures, Representation (75)! Huddleston, Summer 2009 © UCB !

Bonus Example: Compile This (3/5)!

• Notes:!
• main function ends with a jump to
__exit, not jr $ra, so thereʼs no need
to save $ra onto stack!

• all variables used in main function are
saved registers, so thereʼs no need to
save these onto stack!

CS61CL L03 MIPS II: Procedures, Representation (76)! Huddleston, Summer 2009 © UCB !

Bonus Example: Compile This (4/5)!
mult:

 add $t0,$0,$0 # prod=0!
Loop:

 slt $t1,$0,$a1 # mlr > 0?
 beq $t1,$0,Fin # no=>Fin
 add $t0,$t0,$a0 # prod+=mc
 addi $a1,$a1,-1 # mlr-=1

 j Loop # goto Loop!
Fin:

 add $v0,$t0,$0 # $v0=prod
 jr $ra # return!

int mult (int mcand, int mlier){
int product = 0;

while (mlier > 0) {
 product += mcand;

 mlier -= 1; }
return product;

}
CS61CL L03 MIPS II: Procedures, Representation (77)! Huddleston, Summer 2009 © UCB !

Bonus Example: Compile This (5/5)!

• Notes:!
• no jal calls are made from mult and we
donʼt use any saved registers, so we
donʼt need to save anything onto stack!

• temp registers are used for intermediate
calculations (could have used s
registers, but would have to save the
callerʼs on the stack.)!
• $a1 is modified directly (instead of
copying into a temp register) since we
are free to change it!

• result is put into $v0 before returning
(could also have modified $v0 directly)!

CS61CL L03 MIPS II: Procedures, Representation (78)! Huddleston, Summer 2009 © UCB !

Overview – Instruction Representation!

• Big idea: stored program!
•  consequences of stored program!

• Instructions as numbers!
• Instruction encoding !
• MIPS instruction format for Add
instructions!
• MIPS instruction format for Immediate,
Data transfer instructions!

CS61CL L03 MIPS II: Procedures, Representation (79)! Huddleston, Summer 2009 © UCB !

Big Idea: Stored-Program Concept!

• Computers built on 2 key principles:!
• Instructions are represented as bit
patterns - can think of these as numbers.!

• Therefore, entire programs can be stored
in memory to be read or written just like
data.!

• Simplifies SW/HW of computer
systems: !

• Memory technology for data also used
for programs!

CS61CL L03 MIPS II: Procedures, Representation (80)! Huddleston, Summer 2009 © UCB !

Consequence #1: Everything Addressed!

• Since all instructions and data are stored in
memory, everything has a memory address:
instructions, data words!

• both branches and jumps use these!

• C pointers are just memory addresses: they
can point to anything in memory!

• Unconstrained use of addresses can lead to
nasty bugs; up to you in C; limits in Java!

• One register keeps address of instruction
being executed: “Program Counter” (PC)!

• Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name!

CS61CL L03 MIPS II: Procedures, Representation (81)! Huddleston, Summer 2009 © UCB !

Consequence #2: Binary Compatibility!

• Programs are distributed in binary form!
• Programs bound to specific instruction set!
• Different version for Macintoshes and PCs!

• New machines want to run old programs
(“binaries”) as well as programs compiled
to new instructions!
• Leads to “backward compatible” instruction

set evolving over time!
• Selection of Intel 8086 in 1981 for 1st IBM

PC is major reason latest PCs still use
80x86 instruction set (Pentium 4); could still
run program from 1981 PC today!

CS61CL L03 MIPS II: Procedures, Representation (82)! Huddleston, Summer 2009 © UCB !

• Problem 0: Unsigned # sign-extended?!
• addiu, sltiu, sign-extends immediates to
32 bits. Thus, # is a “signed” integer.!

• Rationale!
• addiu so that can add w/out overflow!

-  See K&R pp. 230, 305!
• sltiu suffers so that we can have easy HW!

-  Does this mean weʼll get wrong answers?!
-  Nope, it means assembler has to handle any

unsigned immediate 215 ≤ n < 216 (I.e., with a 1
in the 15th bit and 0s in the upper 2 bytes) as it
does for numbers that are too large. #"

I-Format Problems (0/3)!

CS61CL L03 MIPS II: Procedures, Representation (83)! Huddleston, Summer 2009 © UCB !

• Problem: !
• Chances are that addi, lw, sw and slti
will use immediates small enough to fit in
the immediate field.!

• …but what if itʼs too big?!
• We need a way to deal with a 32-bit
immediate in any I-format instruction.!

I-Format Problem (1/3)!

CS61CL L03 MIPS II: Procedures, Representation (84)! Huddleston, Summer 2009 © UCB !

• Solution to Problem:!
• Handle it in software + new instruction!
• Donʼt change the current instructions:
instead, add a new instruction to help out!

• New instruction:!
! !lui register, immediate!
• stands for Load Upper Immediate!
• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
register!

• sets lower half to 0s!

I-Format Problem (2/3)!

CS61CL L03 MIPS II: Procedures, Representation (85)! Huddleston, Summer 2009 © UCB !

• Solution to Problem (continued):!
• So how does lui help us?!
• Example:!

! addiu $t0,$t0, 0xABABCDCD!
…becomes!
 lui $at 0xABAB
 ori $at, $at, 0xCDCD
 addu $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.!

• Wouldnʼt it be nice if the assembler would
this for us automatically? (later)!

I-Format Problems (3/3)!

CS61CL L03 MIPS II: Procedures, Representation (86)! Huddleston, Summer 2009 © UCB !

Decoding Machine Language!
•  How do we convert 1s and 0s to

assembly language and to C code?!
Machine language # assembly # C?!

•  For each 32 bits:!
1.  Look at opcode to distinquish between R-

Format, J-Format, and I-Format.!
2.  Use instruction format to determine which

fields exist. !
3.  Write out MIPS assembly code, converting

each field to name, register number/name,
or decimal/hex number.!

4.  Logically convert this MIPS code into
valid C code. Always possible? Unique?!

CS61CL L03 MIPS II: Procedures, Representation (87)! Huddleston, Summer 2009 © UCB !

Decoding Example (1/7)!

• Here are six machine language
instructions in hexadecimal:!

 00001025hex
 0005402Ahex
 11000003hex
 00441020hex
 20A5FFFFhex
 08100001hex!

• Let the first instruction be at address
4,194,304ten (0x00400000hex).!
• Next step: convert hex to binary!

CS61CL L03 MIPS II: Procedures, Representation (88)! Huddleston, Summer 2009 © UCB !

Decoding Example (2/7)!

• The six machine language instructions in
binary:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001!
• Next step: identify opcode and format

1, 4-62" rs" rt" immediate"
0" rs" rt" rd" funct"shamt"R"

I!
J! target address!2 or 3!

CS61CL L03 MIPS II: Procedures, Representation (89)! Huddleston, Summer 2009 © UCB !

Decoding Example (3/7)!
• Select the opcode (first 6 bits)  

to determine the format:

 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Look at opcode:  
0 means R-Format, 
2 or 3 mean J-Format,  
otherwise I-Format.!
•  Next step: separation of fields!

R!
R!
I!
R!
I!
J!

Format:!

CS61CL L03 MIPS II: Procedures, Representation (90)! Huddleston, Summer 2009 © UCB !

Decoding Example (4/7)!

• Fields separated based on format/opcode:!

0" 0" 0" 2" 37"0"
0" 0" 5" 8" 42"0"
4" 8" 0" +3"
0" 2" 4" 2" 32"0"
8" 5" 5" -1"
2" 1,048,577"

• Next step: translate (“disassemble”) to
MIPS assembly instructions!

R!
R!
I!
R!
I!
J!

Format:!

CS61CL L03 MIPS II: Procedures, Representation (91)! Huddleston, Summer 2009 © UCB !

Decoding Example (5/7)!

• MIPS Assembly (Part 1):!
 Address: Assembly

instructions:!
 0x00400000 or

$2,$0,$0 0x00400004 slt
$8,$0,$5 0x00400008 beq
$8,$0,3 0x0040000c add
$2,$2,$4 0x00400010 addi
$5,$5,-1 0x00400014 j
0x100001!• Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)!

CS61CL L03 MIPS II: Procedures, Representation (92)! Huddleston, Summer 2009 © UCB !

Decoding Example (6/7)!

• MIPS Assembly (Part 2):!

! ! ! !or $v0,$0,$0
 Loop: slt
$t0,$0,$a1
 beq
$t0,$0,Exit
 add
$v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop Exit:!

• Next step: translate to C code
(must be creative!)!

CS61CL L03 MIPS II: Procedures, Representation (93)! Huddleston, Summer 2009 © UCB !

Decoding Example (7/7)!
• After C code (Mapping below)  

!$v0: product ! ! !
!$a0: multiplicand ! !
!$a1: multiplier!
 product = 0;

while (multiplier > 0) {
 product += multiplicand;
 multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex!

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is

treated like data!

 or $v0,$0,$0
Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1

 j Loop
Exit:

CS61CL L03 MIPS II: Procedures, Representation (94)! Huddleston, Summer 2009 © UCB !

Administrivia!

• Midterm is next week! Day and
location are still TBA!

• Old midterms online (link at top of page)!
• Lectures and reading materials fair game!
• Fix green sheet errors (if old book)!

• Review session also TBA!
• Project 2 is due March 5 at 11:59PM!

• Thatʼs Wednesday!!
• There was a file update. See spec page.!

CS61CL L03 MIPS II: Procedures, Representation (95)! Huddleston, Summer 2009 © UCB !

Review from before: lui!
• So how does lui help us?!

• Example:!
! !addi $t0,$t0, 0xABABCDCD

becomes:!
 lui $at, 0xABAB

 ori $at, $at, 0xCDCD
 add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.!

• Wouldnʼt it be nice if the assembler
would this for us automatically? !

-  If number too big, then just automatically
replace addi with lui, ori, add!

CS61CL L03 MIPS II: Procedures, Representation (96)! Huddleston, Summer 2009 © UCB !

True Assembly Language (1/3)!
• Pseudoinstruction: A MIPS instruction
that doesnʼt turn directly into a machine
language instruction, but into other MIPS
instructions!
• What happens with pseudo-instructions?!

• Theyʼre broken up by the assembler into
several “real” MIPS instructions.!

•  Some examples follow!

CS61CL L03 MIPS II: Procedures, Representation (97)! Huddleston, Summer 2009 © UCB !

Example Pseudoinstructions!

• Register Move
move reg2,reg1!
Expands to:!
add reg2,$zero,reg1

• Load Immediate!
li reg,value
If value fits in 16 bits:!
addi reg,$zero,value
else:!
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits!

CS61CL L03 MIPS II: Procedures, Representation (98)! Huddleston, Summer 2009 © UCB !

Example Pseudoinstructions!

• Load Address: How do we get the
address of an instruction or global
variable into a register?
la reg,label!
Again if value fits in 16 bits:!
addi reg,$zero,label_value
else:!
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits!

CS61CL L03 MIPS II: Procedures, Representation (99)! Huddleston, Summer 2009 © UCB !

True Assembly Language (2/3)!
• Problem:!

• When breaking up a pseudo-instruction,
the assembler may need to use an extra
register!

• If it uses any regular register, itʼll overwrite
whatever the program has put into it.!

• Solution:!
• Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.!

• Since the assembler may use this at any
time, itʼs not safe to code with it.!

CS61CL L03 MIPS II: Procedures, Representation (100)! Huddleston, Summer 2009 © UCB !

Example Pseudoinstructions !

• Rotate Right Instruction
ror reg, value!
Expands to:!
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0!
0!

• “No OPeration” instruction!
nop

Expands to instruction = 0ten,!
sll $0, $0, 0 !

CS61CL L03 MIPS II: Procedures, Representation (101)! Huddleston, Summer 2009 © UCB !

Example Pseudoinstructions!
• Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:!
addiu reg,reg,value
else:!
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

• How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?!

CS61CL L03 MIPS II: Procedures, Representation (102)! Huddleston, Summer 2009 © UCB !

True Assembly Language (3/3)!
• MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions!
• TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)!
• A program must be converted from MAL
into TAL before translation into 1s & 0s.!

CS61CL L03 MIPS II: Procedures, Representation (103)! Huddleston, Summer 2009 © UCB !

Questions on Pseudoinstructions!

• Question:!
• How does MIPS assembler / SPIM
recognize pseudo-instructions?!

• Answer:!
• It looks for officially defined pseudo-
instructions, such as ror and move !

• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully!

CS61CL L03 MIPS II: Procedures, Representation (104)! Huddleston, Summer 2009 © UCB !

Rewrite TAL as MAL!

• TAL:!
! ! ! !or $v0,$0,$0
 Loop: slt
$t0,$0,$a1
 beq
$t0,$0,Exit
 add
$v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop Exit:!• This time convert to MAL !

• Itʼs OK for this exercise to
make up MAL instructions!

CS61CL L03 MIPS II: Procedures, Representation (105)! Huddleston, Summer 2009 © UCB !

Rewrite TAL as MAL (Answer)!
• TAL: ! !or $v0,$0,$0

 Loop: slt
$t0,$0,$a1 beq
$t0,$0,Exit

 add $v0,$v0,$a0
 addi

$a1,$a1,-1 j
Loop Exit:

• MAL:!
! ! !li $v0,0

Loop: ble $a1,$zero,Exit
 add $v0,$v0,$a0
 sub $a1,$a1,1

 j Loop
Exit:!

CS61CL L03 MIPS II: Procedures, Representation (106)! Huddleston, Summer 2009 © UCB !

Questions on PC-addressing!

• Does the value in branch field change
if we move the code?!
• What do we do if destination is > 215
instructions away from branch?!
• Why do we need different addressing
modes (different ways of forming a
memory address)? Why not just one?!

