
CS61CL L03 MIPS I: Registers, Memory, Decisions (1)
 Huddleston, Summer 2009 © UCB

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c  
CS61CL : Machine Structures 

Lecture #4 – MIPS I: Registers, Memory, Decisions 

2009-06-30

CS61CL L03 MIPS I: Registers, Memory, Decisions (2)
 Huddleston, Summer 2009 © UCB

Review

• Data lives in 3 places in memory

• Stack – local variables, function parameters

• Heap – malloc (donʼt forget to free!)

• Static – global variables

• Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

• Each technique has strengths and
weaknesses, none is definitively best

CS61CL L03 MIPS I: Registers, Memory, Decisions (3)
 Huddleston, Summer 2009 © UCB

Assembly Language

• Basic job of a CPU: execute lots of
instructions.

• Instructions are the primitive
operations that the CPU may execute.

• Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).

• Examples: Intel 80x86 (Pentium 4), IBM/
Motorola PowerPC (Macintosh), MIPS,
Intel IA64, ...

CS61CL L03 MIPS I: Registers, Memory, Decisions (4)
 Huddleston, Summer 2009 © UCB

MIPS Architecture

• MIPS – semiconductor company
that built one of the first
commercial RISC architectures

• We will study the MIPS
architecture in some detail in this
class (also used in upper division
courses CS 152, 162, 164)

• Why MIPS instead of Intel 80x86?

• MIPS is simple, elegant. Donʼt want
to get bogged down in gritty details.

• MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs

CS61CL L03 MIPS I: Registers, Memory, Decisions (5)
 Huddleston, Summer 2009 © UCB

Assembly Variables: Registers (1/4)

• Unlike HLL like C or Java, assembly
cannot use variables

• Why not? Keep Hardware Simple

• Assembly Operands are registers

• limited number of special locations built
directly into the hardware

• operations can only be performed on
these!

• Benefit: Since registers are directly in
hardware, they are very fast  
(faster than 1 billionth of a second)

CS61CL L03 MIPS I: Registers, Memory, Decisions (6)
 Huddleston, Summer 2009 © UCB

Assembly Variables: Registers (2/4)

• Drawback: Since registers are in
hardware, there are a predetermined
number of them

• Solution: MIPS code must be very
carefully put together to efficiently use
registers

• 32 registers in MIPS

• Why 32? Smaller is faster

• Each MIPS register is 32 bits wide

• Groups of 32 bits called a word in MIPS

CS61CL L03 MIPS I: Registers, Memory, Decisions (7)
 Huddleston, Summer 2009 © UCB

Assembly Variables: Registers (3/4)

• Registers are numbered from 0 to 31

• Each register can be referred to by
number or name

• Number references:

$0, $1, $2, … $30, $31

CS61CL L03 MIPS I: Registers, Memory, Decisions (8)
 Huddleston, Summer 2009 © UCB

Assembly Variables: Registers (4/4)

• By convention, each register also has
a name to make it easier to code

• For now:

$16 - $23

$s0 - $s7

(correspond to C variables)

$8 - $15

$t0 - $t7

(correspond to temporary variables)

Later will explain other 16 register names

• In general, use names to make your
code more readable

CS61CL L03 MIPS I: Registers, Memory, Decisions (9)
 Huddleston, Summer 2009 © UCB

C, Java variables vs. registers

• In C (and most High Level Languages)
variables declared first and given a type

• Example:  
int fahr, celsius;
char a, b, c, d, e;

• Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

• In Assembly Language, the registers
have no type; operation determines how
register contents are treated

CS61CL L03 MIPS I: Registers, Memory, Decisions (10)
 Huddleston, Summer 2009 © UCB

Comments in Assembly

• Another way to make your code more
readable: comments!

• Hash (#) is used for MIPS comments

• anything from hash mark to end of line is
a comment and will be ignored

• This is just like the C99 //

• Note: Different from C.

• C comments have format  
/* comment */  
so they can span many lines

CS61CL L03 MIPS I: Registers, Memory, Decisions (11)
 Huddleston, Summer 2009 © UCB

Assembly Instructions

• In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

• Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

• Instructions are related to operations
(=, +, -, *, /) in C or Java

• Ok, enough already…gimme my MIPS!

CS61CL L03 MIPS I: Registers, Memory, Decisions (12)
 Huddleston, Summer 2009 © UCB

MIPS Addition and Subtraction (1/4)

• Syntax of Instructions:

1
2,3,4

where:

1) operation by name

2) operand getting result (“destination”)

3) 1st operand for operation (“source1”)

4) 2nd operand for operation (“source2”)

• Syntax is rigid:

• 1 operator, 3 operands

• Why? Keep Hardware simple via regularity

CS61CL L03 MIPS I: Registers, Memory, Decisions (13)
 Huddleston, Summer 2009 © UCB

Addition and Subtraction of Integers (2/4)

• Addition in Assembly

• Example:
add $s0,$s1,$s2 (in MIPS)

Equivalent to:
a = b + c (in C)

where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c

• Subtraction in Assembly

• Example:
sub $s3,$s4,$s5 (in MIPS)

Equivalent to:
d = e - f (in C)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

CS61CL L03 MIPS I: Registers, Memory, Decisions (14)
 Huddleston, Summer 2009 © UCB

Addition and Subtraction of Integers (3/4)

• How do the following C statement?

a = b + c + d - e;

• Break into multiple instructions

add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

• Notice: A single line of C may break up
into several lines of MIPS.

• Notice: Everything after the hash mark
on each line is ignored (comments)

CS61CL L03 MIPS I: Registers, Memory, Decisions (15)
 Huddleston, Summer 2009 © UCB

Addition and Subtraction of Integers (4/4)

• How do we do this?

f = (g + h) - (i + j);

• Use intermediate temporary register

add $t0,$s1,$s2 # temp = g + h
add $t1,$s3,$s4 # temp = i + j
sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS61CL L03 MIPS I: Registers, Memory, Decisions (16)
 Huddleston, Summer 2009 © UCB

Register Zero

• One particular immediate, the number
zero (0), appears very often in code.

• So we define register zero ($0 or
$zero) to always have the value 0; eg

add $s0,$s1,$zero (in MIPS)
 f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

• defined in hardware, so an instruction

add $zero,$zero,$s0

will not do anything!

CS61CL L03 MIPS I: Registers, Memory, Decisions (17)
 Huddleston, Summer 2009 © UCB

Immediates

• Immediates are numerical constants.

• They appear often in code, so there
are special instructions for them.

• Add Immediate:

 addi $s0,$s1,10 (in MIPS)
 f = g + 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

• Syntax similar to add instruction,
except that last argument is a number
instead of a register.

CS61CL L03 MIPS I: Registers, Memory, Decisions (18)
 Huddleston, Summer 2009 © UCB

Assembly Operands: Memory

• C variables map onto registers; what
about large data structures like arrays?

• 1 of 5 components of a computer:  
memory contains such data structures

• But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

• Data transfer instructions transfer data
between registers and memory:

• Memory to register

• Register to memory

CS61CL L03 MIPS I: Registers, Memory, Decisions (19)
 Huddleston, Summer 2009 © UCB

Data Transfer: Memory to Reg (1/4)

• To transfer a word of data, 
we need to specify two things:

• Register: specify this by # ($0 - $31) or  
symbolic name ($s0,…,$t0,…)

• Memory address: more difficult

-  Think of memory as a single one-

dimensional array, so we can address
it simply by supplying a pointer to a
memory address.

-  Other times, we want to be able to
offset from this pointer.

• Remember: “Load FROM memory”

CS61CL L03 MIPS I: Registers, Memory, Decisions (20)
 Huddleston, Summer 2009 © UCB

Data Transfer: Memory to Reg (2/4)

• To specify a memory address to copy
from, specify two things:

• A register containing a pointer to memory

• A numerical offset (in bytes)

• The desired memory address is the
sum of these two values.

• Example: 8($t0)

• specifies the memory address pointed to
by the value in $t0, plus 8 bytes

CS61CL L03 MIPS I: Registers, Memory, Decisions (21)
 Huddleston, Summer 2009 © UCB

Data Transfer: Memory to Reg (3/4)

• Load Instruction Syntax:

1 2,3(4)
• where

1) operation name

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

• MIPS Instruction Name:

• lw (meaning Load Word, so 32 bits or one
word are loaded at a time)

CS61CL L03 MIPS I: Registers, Memory, Decisions (22)
 Huddleston, Summer 2009 © UCB

Data Transfer: Memory to Reg (4/4)

Example:
lw $t0,12($s0)
 This instruction will take the pointer in $s0,
add 12 bytes to it, and then load the value from
the memory pointed to by this calculated sum
into register $t0

• Notes:

•  $s0 is called the base register

•  12 is called the offset

• offset is generally used in accessing elements

of array or structure: base reg points to
beginning of array or structure (note offset must
be a constant known at assembly time)

Data flow

CS61CL L03 MIPS I: Registers, Memory, Decisions (23)
 Huddleston, Summer 2009 © UCB

Data Transfer: Reg to Memory

• Also want to store from register into memory

• Store instruction syntax is identical to Loadʼs

• MIPS Instruction Name:

 sw (meaning Store Word, so 32 bits or

one word is stored at a time)

• Example:
sw $t0,12($s0)

This instruction will take the pointer in $s0, add
12 bytes to it, and then store the value from
register $t0 into that memory address

• Remember: “Store INTO memory”

Data flow

CS61CL L03 MIPS I: Registers, Memory, Decisions (24)
 Huddleston, Summer 2009 © UCB

Pointers v. Values

• Key Concept: A register can hold any
32-bit value. That value can be a
char, an int, a pointer (memory
addr), and so on

• E.g., If you write: add $t2,$t1,$t0
then $t0 and $t1 better contain values
that can be added

• E.g., If you write: lw $t2,0($t0)
then $t0 better contain a pointer

• Donʼt mix these up!

CS61CL L03 MIPS I: Registers, Memory, Decisions (25)
 Huddleston, Summer 2009 © UCB

Notes about Memory

• Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

• Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

• Also, remember that for both lw and sw,
the sum of the base address and the
offset must be 
a multiple of 4 (to be word aligned)

CS61CL L03 MIPS I: Registers, Memory, Decisions (26)
 Huddleston, Summer 2009 © UCB

More Notes about Memory: Alignment

• MIPS requires that all words start at byte

addresses that are multiples of 4 bytes

• Called Alignment: objects fall on address that is
multiple of their size

 3 2 1 0

Aligned

Not
Aligned

0, 4, 8, or Chex

Last hex digit
of address is:

1, 5, 9, or Dhex

2, 6, A, or Ehex

3, 7, B, or Fhex

CS61CL L03 MIPS I: Registers, Memory, Decisions (27)
 Huddleston, Summer 2009 © UCB

Role of Registers vs. Memory

• What if more variables than registers?

• Compiler tries to keep most frequently
used variable in registers

• Less common variables in memory:
spilling

• Why not keep all variables in memory?

• Smaller is faster: 
registers are faster than memory

• Registers more versatile:

-  MIPS arithmetic instructions can read 2,
operate on them, and write 1 per instruction

-  MIPS data transfer only read or write 1
operand per instruction, and no operation

CS61CL L03 MIPS I: Registers, Memory, Decisions (28)
 Huddleston, Summer 2009 © UCB

Administrivia

• HW2 due tomorrow.

• HW3 is up.

• Proj1 will be up soon… start early

• Future “Wednesday” assignments will
be moved to Thursday due dates.

• Check the newsgroup often and ask
there for help.

CS61CL L03 MIPS I: Registers, Memory, Decisions (29)
 Huddleston, Summer 2009 © UCB

So Far...

• All instructions so far only manipulate
data…weʼve built a calculator of sorts.

• In order to build a computer, we need
ability to make decisions…

• C (and MIPS) provide labels to support
“goto” jumps to places in code.

• C: Horrible style; MIPS: Necessary!

CS61CL L03 MIPS I: Registers, Memory, Decisions (30)
 Huddleston, Summer 2009 © UCB

MIPS Decision Instructions

• Decision instruction in MIPS:

beq register1, register2, L1

beq is “Branch if (registers are) equal”  
Same meaning as (using C):  
 if (register1==register2) goto L1

• Complementary MIPS decision instruction
bne register1, register2, L1
bne is “Branch if (registers are) not equal”  
 Same meaning as (using C):  
 if (register1!=register2) goto L1

• Called conditional branches

CS61CL L03 MIPS I: Registers, Memory, Decisions (31)
 Huddleston, Summer 2009 © UCB

MIPS Goto Instruction

• In addition to conditional branches,
MIPS has an unconditional branch:

j label

• Called a Jump Instruction: jump (or
branch) directly to the given label
without needing to satisfy any condition

• Same meaning as (using C): goto
label

• Technically, itʼs the same effect as:

beq $0,$0,label

since it always satisfies the condition.

CS61CL L03 MIPS I: Registers, Memory, Decisions (32)
 Huddleston, Summer 2009 © UCB

Compiling C if into MIPS (1/2)

• Use this mapping: 
 f: $s0  
 g: $s1
 h: $s2  
 i: $s3  
 j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

• Compile by hand
 if (i == j) f=g+h;

else f=g-h;

CS61CL L03 MIPS I: Registers, Memory, Decisions (33)
 Huddleston, Summer 2009 © UCB

Compiling C if into MIPS (2/2)

• Final compiled MIPS code:
 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to handle
decisions (branches). Generally not found in HLL
code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

• Compile by hand
 if (i == j) f=g+h;

else f=g-h;
• Use this mapping: 
 f: $s0 g: $s1 h: $s2 i: $s3 j: $s4

CS61CL L03 MIPS I: Registers, Memory, Decisions (34)
 Huddleston, Summer 2009 © UCB

Loops in C/Assembly (1/3)

• Simple loop in C; A[] is an array of ints

 do { g = g + A[i];
 i = i + j;
} while (i != h);

• Rewrite this as:

 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

• Use this mapping: 
 g, h, i, j, base of A
 $s1, $s2, $s3, $s4, $s5

CS61CL L03 MIPS I: Registers, Memory, Decisions (35)
 Huddleston, Summer 2009 © UCB

Loops in C/Assembly (2/3)

• Final compiled MIPS code:
Loop:sll $t1,$s3,2 # $t1= 4*I
 addu $t1,$t1,$s5 # $t1=addr A+4i
 lw $t1,0($t1) # $t1=A[i]
 addu $s1,$s1,$t1 # g=g+A[i]
 addu $s3,$s3,$s4 # i=i+j
 bne $s3,$s2,Loop # goto Loop
 # if i!=h

• Original code:

 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

CS61CL L03 MIPS I: Registers, Memory, Decisions (36)
 Huddleston, Summer 2009 © UCB

Loops in C/Assembly (3/3)

• There are three types of loops in C:

• while
• do… while
• for

• Each can be rewritten as either of the
other two, so the method used in the
previous example can be applied to
these loops as well.

• Key Concept: Though there are
multiple ways of writing a loop in
MIPS, the key to decision-making is
conditional branch

CS61CL L03 MIPS I: Registers, Memory, Decisions (37)
 Huddleston, Summer 2009 © UCB

Inequalities in MIPS (1/4)

• Until now, weʼve only tested equalities  
(== and != in C). General programs
need to test < and > as well.

• Introduce MIPS Inequality Instruction:

• “Set on Less Than”

• Syntax: slt reg1,reg2,reg3
• Meaning:

if (reg2 < reg3)
 reg1 = 1;
 else reg1 = 0;

 “set” means “change to 1”,  
“reset” means “change to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61CL L03 MIPS I: Registers, Memory, Decisions (38)
 Huddleston, Summer 2009 © UCB

Inequalities in MIPS (2/4)

• How do we use this? Compile by hand: 
if (g < h) goto Less; #g:$s0, h:$s1

• Answer: compiled MIPS code…

 slt $t0,$s0,$s1 # $t0 = 1 if
g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

• Register $0 always contains the value 0, so
bne and beq often use it for comparison
after an slt instruction.

•  A slt  bne pair means if(… < …)goto…

CS61CL L03 MIPS I: Registers, Memory, Decisions (39)
 Huddleston, Summer 2009 © UCB

Inequalities in MIPS (3/4)

• Now we can implement <,  
but how do we implement >, ≤ and ≥ ?

• We could add 3 more instructions, but:

• MIPS goal: Simpler is Better

• Can we implement ≤ in one or more
instructions using just slt and
branches?

• What about >?

• What about ≥?

CS61CL L03 MIPS I: Registers, Memory, Decisions (40)
 Huddleston, Summer 2009 © UCB

Inequalities in MIPS (4/4)

 # a:$s0, b:$s1
slt $t0,$s0,$s1 # $t0 = 1 if a<b
beq $t0,$0,skip # skip if a >= b
 <stuff> # do if a<b
skip:

Two independent variations
possible:

Use slt $t0,$s1,$s0 instead of

slt $t0,$s0,$s1

Use bne instead of beq

CS61CL L03 MIPS I: Registers, Memory, Decisions (41)
 Huddleston, Summer 2009 © UCB

Immediates in Inequalities

• There is also an immediate version of
slt to test against constants: slti
• Helpful in for loops

 if (g >= 1) goto Loop

 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0

 # (if (g>=1))

C

M 
I 
P 
S

An slt  beq pair means if(… ≥ …)goto…

CS61CL L03 MIPS I: Registers, Memory, Decisions (42)
 Huddleston, Summer 2009 © UCB

“And in Conclusion…”

• In MIPS Assembly Language:

• Registers replace C variables

• One Instruction (simple operation) per line

• Simpler is Better

• Smaller is Faster

• New Instructions:

add, addi, sub

• New Registers:

C Variables: $s0 - $s7

Temporary Variables: $t0 - $t9

Zero: $zero

CS61CL L03 MIPS I: Registers, Memory, Decisions (43)
 Huddleston, Summer 2009 © UCB

“And in Conclusion…”

• Memory is byte-addressable, but lw and sw
access one word at a time.

• A pointer (used by lw and sw) is just a

memory address, we can add to it or subtract
from it (using offset).

• A Decision allows us to decide what to

execute at run-time rather than compile-time.

• C Decisions are made using conditional

statements within if, while, do while, for.

• MIPS Decision making instructions are the

conditional branches: beq and bne.

• New Instructions:

lw, sw, beq, bne, j

CS61CL L03 MIPS I: Registers, Memory, Decisions (44)
 Huddleston, Summer 2009 © UCB

“And in conclusion…”

• To help the conditional branches make
decisions concerning inequalities, we
introduce: “Set on Less Than” called  
slt, slti, sltu, sltiu
• One can store and load (signed and
unsigned) bytes as well as words with
lb, lbu
• Unsigned add/sub donʼt cause overflow

• New MIPS Instructions: 
 sll, srl, lb, lbu
 slt, slti, sltu, sltiu
 addu, addiu, subu

CS61CL L03 MIPS I: Registers, Memory, Decisions (45)
 Huddleston, Summer 2009 © UCB

Bonus slides

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

• The slides will appear in the order they
would have in the normal presentation

CS61CL L03 MIPS I: Registers, Memory, Decisions (46)
 Huddleston, Summer 2009 © UCB

Example: The C Switch Statement (1/3)

• Choose among four alternatives depending
on whether k has the value 0, 1, 2 or 3.
Compile this C code: 

switch (k) {
 case 0: f=i+j; break; /* k=0 */
 case 1: f=g+h; break; /* k=1 */
 case 2: f=g–h; break; /* k=2 */
 case 3: f=i–j; break; /* k=3 */
}

CS61CL L03 MIPS I: Registers, Memory, Decisions (47)
 Huddleston, Summer 2009 © UCB

Example: The C Switch Statement (2/3)

• This is complicated, so simplify.

• Rewrite it as a chain of if-else
statements, which we already know
how to compile:

if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

• Use this mapping:

 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5

CS61CL L03 MIPS I: Registers, Memory, Decisions (48)
 Huddleston, Summer 2009 © UCB

Example: The C Switch Statement (3/3)

• Final compiled MIPS code: 
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 #k==3 so f=i-j
Exit:

CS61CL L03 MIPS I: Registers, Memory, Decisions (49)
 Huddleston, Summer 2009 © UCB

Immediates

• There is no Subtract Immediate in
MIPS: Why?

• Limit types of operations that can be
done to absolute minimum

• if an operation can be decomposed into a
simpler operation, donʼt include it

• addi …, -X = subi …, X => so no subi

• addi $s0,$s1,-10 (in MIPS)
 f = g - 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

CS61CL L03 MIPS I: Registers, Memory, Decisions (50)
 Huddleston, Summer 2009 © UCB

Anatomy: 5 components of any Computer

 Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

Output

These are “data transfer” instructions…

Registers are in the datapath of the
processor; if operands are in memory, we
must transfer them to the processor to

operate on them, and then transfer back to
memory when done.

CS61CL L03 MIPS I: Registers, Memory, Decisions (51)
 Huddleston, Summer 2009 © UCB

Addressing: Byte vs. Word

• Every word in memory has an address,
similar to an index in an array

• Early computers numbered words like C

numbers elements of an array:

• Memory[0], Memory[1], Memory[2], …

• Computers needed to access 8-bit bytes as well as words (4 bytes/word)

• Today machines address memory as bytes, (i.e., “Byte Addressed”) hence 32-bit (4 byte) word addresses differ by 4

• Memory[0], Memory[4], Memory[8]

Called the “address” of a word

CS61CL L03 MIPS I: Registers, Memory, Decisions (52)
 Huddleston, Summer 2009 © UCB

Compilation with Memory

• What offset in lw to select A[5] in C?

•  4x5=20 to select A[5]: byte v. word

• Compile by hand using registers: 

g = h + A[5];

•  g: $s1, h: $s2, $s3: base address of A

• 1st transfer from memory to register:

lw $t0,20($s3) # $t0 gets

A[5]

• Add 20 to $s3 to select A[5], put into $t0

• Next add it to h and place in g  
add $s1,$s2,$t0 # $s1 = h+A[5]

CS61CL L03 MIPS I: Registers, Memory, Decisions (53)
 Huddleston, Summer 2009 © UCB

C Decisions: if Statements

• 2 kinds of if statements in C

if (condition) clause

if (condition) clause1 else clause2

• Rearrange 2nd if into following:

 if (condition) goto L1;
 clause2; 

 goto L2;
 L1: clause1;

 L2:

• Not as elegant as if-else, but same
meaning

CS61CL L03 MIPS I: Registers, Memory, Decisions (54)
 Huddleston, Summer 2009 © UCB

Last time: Loading, Storing bytes 1/2

• In addition to word data transfers  
(lw, sw), MIPS has byte data transfers:

• load byte: lb

• store byte: sb

• same format as lw, sw
• E.g., lb $s0, 3($s1)

• contents of memory location with
address = sum of “3” + contents of
register s1 is copied to the low byte
position of register s0.

CS61CL L03 MIPS I: Registers, Memory, Decisions (55)
 Huddleston, Summer 2009 © UCB

x

Loading, Storing bytes 2/2

• What do with other 24 bits in the 32 bit
register?

• lb: sign extends to fill upper 24 bits

byte 
loaded
…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

  Normally donʼt want to sign extend
chars

  MIPS instruction that doesnʼt 
 sign extend when loading bytes:

  load byte unsigned: lbu

CS61CL L03 MIPS I: Registers, Memory, Decisions (56)
 Huddleston, Summer 2009 © UCB

Overflow in Arithmetic (1/2)

• Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.

• Example (4-bit unsigned numbers):

+15

 1111

 +3

 0011

+18

 10010

• But we donʼt have room for 5-bit solution,
so the solution would be 0010, which is
+2, and wrong.

CS61CL L03 MIPS I: Registers, Memory, Decisions (57)
 Huddleston, Summer 2009 © UCB

Overflow in Arithmetic (2/2)

• Some languages detect overflow (Ada),  
some donʼt (C)

• MIPS solution is 2 kinds of arithmetic
instructs:

• These cause overflow to be detected

-  add (add)

-  add immediate (addi)

-  subtract (sub)

• These do not cause overflow detection

-  add unsigned (addu)

-  add immediate unsigned (addiu)

-  subtract unsigned (subu)

• Compiler selects appropriate arithmetic

• MIPS C compilers produce addu, addiu,

CS61CL L03 MIPS I: Registers, Memory, Decisions (58)
 Huddleston, Summer 2009 © UCB

What about unsigned numbers?

• Also unsigned inequality instructions:

sltu, sltiu

…which sets result to 1 or 0 depending
on unsigned comparisons

• What is value of $t0, $t1?

($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)

 slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS61CL L03 MIPS I: Registers, Memory, Decisions (59)
 Huddleston, Summer 2009 © UCB

MIPS Signed vs. Unsigned – diff meanings!

• MIPS terms Signed/Unsigned
“overloaded”:

• Do/Don't sign extend

-  (lb, lbu)
• Do/Don't overflow

-  (add, addi, sub, mult, div)
-  (addu, addiu, subu, multu, divu)

• Do signed/unsigned compare

-  (slt, slti/sltu, sltiu)

CS61CL L03 MIPS I: Registers, Memory, Decisions (60)
 Huddleston, Summer 2009 © UCB

Two “Logic” Instructions

• Here are 2 more new instructions

• Shift Left: sll $s1,$s2,2 #s1=s2<<2

• Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0ʼs on right; << in C

• Before:
0000 0002hex  
0000 0000 0000 0000 0000 0000 0000 0010two

• After:
0000 0008hex  
0000 0000 0000 0000 0000 0000 0000 1000two

• What arithmetic effect does shift left have?

• Shift Right: srl is opposite shift; >>

