
CS61CL L03 MIPS I: Registers, Memory, Decisions (1)! Huddleston, Summer 2009 © UCB !

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c "
CS61CL : Machine Structures"

Lecture #4 – MIPS I: Registers, Memory, Decisions"

2009-06-30!

CS61CL L03 MIPS I: Registers, Memory, Decisions (2)! Huddleston, Summer 2009 © UCB !

Review!

•!Data lives in 3 places in memory!

•!Stack – local variables, function parameters!

•!Heap – malloc (don#t forget to free!)!

•!Static – global variables!

•!Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy!

•!2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.!

•!Each technique has strengths and
weaknesses, none is definitively best!

CS61CL L03 MIPS I: Registers, Memory, Decisions (3)! Huddleston, Summer 2009 © UCB !

Assembly Language!

•!Basic job of a CPU: execute lots of
instructions.!

•!Instructions are the primitive
operations that the CPU may execute.!

•!Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).!

•!Examples: Intel 80x86 (Pentium 4), IBM/
Motorola PowerPC (Macintosh), MIPS,
Intel IA64, ...!

CS61CL L03 MIPS I: Registers, Memory, Decisions (4)! Huddleston, Summer 2009 © UCB !

MIPS Architecture!

•!MIPS – semiconductor company
that built one of the first
commercial RISC architectures!

•!We will study the MIPS
architecture in some detail in this
class (also used in upper division
courses CS 152, 162, 164)!

•!Why MIPS instead of Intel 80x86?!

•!MIPS is simple, elegant. Don#t want
to get bogged down in gritty details.!

•!MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs!

CS61CL L03 MIPS I: Registers, Memory, Decisions (5)! Huddleston, Summer 2009 © UCB !

Assembly Variables: Registers (1/4)!

•!Unlike HLL like C or Java, assembly
cannot use variables!

•!Why not? Keep Hardware Simple!

•!Assembly Operands are registers!

•!limited number of special locations built
directly into the hardware!

•!operations can only be performed on
these!!

•!Benefit: Since registers are directly in
hardware, they are very fast "
(faster than 1 billionth of a second)!

CS61CL L03 MIPS I: Registers, Memory, Decisions (6)! Huddleston, Summer 2009 © UCB !

Assembly Variables: Registers (2/4)!

•!Drawback: Since registers are in
hardware, there are a predetermined
number of them!

•!Solution: MIPS code must be very
carefully put together to efficiently use
registers!

•!32 registers in MIPS!

•!Why 32? Smaller is faster!

•!Each MIPS register is 32 bits wide!

•!Groups of 32 bits called a word in MIPS!

CS61CL L03 MIPS I: Registers, Memory, Decisions (7)! Huddleston, Summer 2009 © UCB !

Assembly Variables: Registers (3/4)!

•!Registers are numbered from 0 to 31!

•!Each register can be referred to by
number or name!

•!Number references:!

$0, $1, $2, … $30, $31!

CS61CL L03 MIPS I: Registers, Memory, Decisions (8)! Huddleston, Summer 2009 © UCB !

Assembly Variables: Registers (4/4)!

•!By convention, each register also has
a name to make it easier to code!

•!For now:!

$16 - $23 !! !$s0 - $s7!

! !(correspond to C variables)!

$8 - $15 !! !$t0 - $t7!

! !(correspond to temporary variables)!

Later will explain other 16 register names!

•!In general, use names to make your
code more readable!

CS61CL L03 MIPS I: Registers, Memory, Decisions (9)! Huddleston, Summer 2009 © UCB !

C, Java variables vs. registers!

•!In C (and most High Level Languages)
variables declared first and given a type!

•!Example: "
int fahr, celsius;
char a, b, c, d, e;

•!Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).!

•!In Assembly Language, the registers
have no type; operation determines how
register contents are treated!

CS61CL L03 MIPS I: Registers, Memory, Decisions (10)! Huddleston, Summer 2009 © UCB !

Comments in Assembly!

•!Another way to make your code more
readable: comments!!

•!Hash (#) is used for MIPS comments!

•!anything from hash mark to end of line is
a comment and will be ignored!

•!This is just like the C99 //!

•!Note: Different from C.!

•!C comments have format "
/* comment */ "
so they can span many lines!

CS61CL L03 MIPS I: Registers, Memory, Decisions (11)! Huddleston, Summer 2009 © UCB !

Assembly Instructions!

•!In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands!

•!Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction!

•!Instructions are related to operations
(=, +, -, *, /) in C or Java!

•!Ok, enough already…gimme my MIPS!!

CS61CL L03 MIPS I: Registers, Memory, Decisions (12)! Huddleston, Summer 2009 © UCB !

MIPS Addition and Subtraction (1/4)!

•!Syntax of Instructions:!

1 !2,3,4!

where:!

1) operation by name !

2) operand getting result (“destination”)!

3) 1st operand for operation (“source1”)!

4) 2nd operand for operation (“source2”)!

•!Syntax is rigid:!

•!1 operator, 3 operands!

•!Why? Keep Hardware simple via regularity!

CS61CL L03 MIPS I: Registers, Memory, Decisions (13)! Huddleston, Summer 2009 © UCB !

Addition and Subtraction of Integers (2/4)!

•!Addition in Assembly!

•!Example: !add $s0,$s1,$s2 (in MIPS)!

!Equivalent to: !a = b + c (in C)!

where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c !

•!Subtraction in Assembly!

•!Example: !sub $s3,$s4,$s5 (in MIPS)!

!Equivalent to: !d = e - f (in C)!

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f !

CS61CL L03 MIPS I: Registers, Memory, Decisions (14)! Huddleston, Summer 2009 © UCB !

Addition and Subtraction of Integers (3/4)!

•!How do the following C statement?!

a = b + c + d - e;

•!Break into multiple instructions!

add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp - e

•!Notice: A single line of C may break up
into several lines of MIPS.!

•!Notice: Everything after the hash mark
on each line is ignored (comments)!

CS61CL L03 MIPS I: Registers, Memory, Decisions (15)! Huddleston, Summer 2009 © UCB !

Addition and Subtraction of Integers (4/4)!

•!How do we do this?!

f = (g + h) - (i + j);

•!Use intermediate temporary register!

add $t0,$s1,$s2 # temp = g + h

add $t1,$s3,$s4 # temp = i + j

sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS61CL L03 MIPS I: Registers, Memory, Decisions (16)! Huddleston, Summer 2009 © UCB !

Register Zero!

•!One particular immediate, the number
zero (0), appears very often in code.!

•!So we define register zero ($0 or
$zero) to always have the value 0; eg!

add $s0,$s1,$zero (in MIPS)

 f = g (in C)!

where MIPS registers $s0,$s1 are
associated with C variables f, g!

•!defined in hardware, so an instruction !

!add $zero,$zero,$s0!

!will not do anything!!
CS61CL L03 MIPS I: Registers, Memory, Decisions (17)! Huddleston, Summer 2009 © UCB !

Immediates!

•!Immediates are numerical constants.!

•!They appear often in code, so there
are special instructions for them.!

•!Add Immediate:!

 addi $s0,$s1,10 (in MIPS)

 f = g + 10 (in C)!

where MIPS registers $s0,$s1 are
associated with C variables f, g

•!Syntax similar to add instruction,
except that last argument is a number
instead of a register.!

CS61CL L03 MIPS I: Registers, Memory, Decisions (18)! Huddleston, Summer 2009 © UCB !

Assembly Operands: Memory!

•!C variables map onto registers; what
about large data structures like arrays?!

•!1 of 5 components of a computer: "
memory contains such data structures!

•!But MIPS arithmetic instructions only
operate on registers, never directly on
memory.!

•!Data transfer instructions transfer data
between registers and memory:!

•!Memory to register !

•!Register to memory!

CS61CL L03 MIPS I: Registers, Memory, Decisions (19)! Huddleston, Summer 2009 © UCB !

Data Transfer: Memory to Reg (1/4)!

•!To transfer a word of data,"
we need to specify two things:!

•!Register: specify this by # ($0 - $31) or "
symbolic name ($s0,…,$t0,…)!

•!Memory address: more difficult!

-! Think of memory as a single one-
dimensional array, so we can address
it simply by supplying a pointer to a
memory address.!

-! Other times, we want to be able to
offset from this pointer.!

•!Remember: “Load FROM memory”!
CS61CL L03 MIPS I: Registers, Memory, Decisions (20)! Huddleston, Summer 2009 © UCB !

Data Transfer: Memory to Reg (2/4)!

•!To specify a memory address to copy
from, specify two things:!

•!A register containing a pointer to memory!

•!A numerical offset (in bytes)!

•!The desired memory address is the
sum of these two values.!

•!Example: 8($t0)!

•!specifies the memory address pointed to
by the value in $t0, plus 8 bytes!

CS61CL L03 MIPS I: Registers, Memory, Decisions (21)! Huddleston, Summer 2009 © UCB !

Data Transfer: Memory to Reg (3/4)!

•!Load Instruction Syntax:!

!1 2,3(4)

•!where!

! !1) operation name!

! !2) register that will receive value!

! !3) numerical offset in bytes!

! !4) register containing pointer to memory!

•!MIPS Instruction Name:!

•!lw (meaning Load Word, so 32 bits or one
word are loaded at a time)!

CS61CL L03 MIPS I: Registers, Memory, Decisions (22)! Huddleston, Summer 2009 © UCB !

Data Transfer: Memory to Reg (4/4)!

Example: !lw $t0,12($s0)

 This instruction will take the pointer in $s0,
add 12 bytes to it, and then load the value from
the memory pointed to by this calculated sum
into register $t0!

•!Notes:!

•! $s0 is called the base register!

•! 12 is called the offset!

•!offset is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure (note offset must
be a constant known at assembly time)!

!"#"$%&'!

CS61CL L03 MIPS I: Registers, Memory, Decisions (23)! Huddleston, Summer 2009 © UCB !

Data Transfer: Reg to Memory!

•!Also want to store from register into memory!

•!Store instruction syntax is identical to Load#s!

•!MIPS Instruction Name:!

 sw (meaning Store Word, so 32 bits or
one word is stored at a time)!

•!Example: !sw $t0,12($s0)

!This instruction will take the pointer in $s0, add
12 bytes to it, and then store the value from
register $t0 into that memory address!

•!Remember: “Store INTO memory”!

!"#"$%&'!

CS61CL L03 MIPS I: Registers, Memory, Decisions (24)! Huddleston, Summer 2009 © UCB !

Pointers v. Values!

•!Key Concept: A register can hold any
32-bit value. That value can be a
char, an int, a pointer (memory
addr), and so on!

•!E.g., If you write: add $t2,$t1,$t0
then $t0 and $t1 better contain values
that can be added!

•!E.g., If you write: lw $t2,0($t0)
then $t0 better contain a pointer!

•!Don#t mix these up!!

CS61CL L03 MIPS I: Registers, Memory, Decisions (25)! Huddleston, Summer 2009 © UCB !

Notes about Memory!

•!Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1. !

•!Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes. !

•!Also, remember that for both lw and sw,
the sum of the base address and the
offset must be"
a multiple of 4 (to be word aligned)!

CS61CL L03 MIPS I: Registers, Memory, Decisions (26)! Huddleston, Summer 2009 © UCB !

More Notes about Memory: Alignment!
•!MIPS requires that all words start at byte

addresses that are multiples of 4 bytes!

•!Called Alignment: objects fall on address that is
multiple of their size!

$$($$$$$$$)$$$$$$$*$$$$$$+$

!"#$%&'(

)*+(

!"#$%&'(

,-(.-(/-(*0(12&3(

,"-#$./0$1232#$$
&4$"115/--$2-6$

4-(5-(6-(*0(72&3(

8-(9-(!-(*0(:2&3(

;-(<-(=-(*0(>2&3(

CS61CL L03 MIPS I: Registers, Memory, Decisions (27)! Huddleston, Summer 2009 © UCB !

Role of Registers vs. Memory!

•!What if more variables than registers?!

•!Compiler tries to keep most frequently
used variable in registers!

•!Less common variables in memory:
spilling!

•!Why not keep all variables in memory?!

•!Smaller is faster:"
registers are faster than memory!

•!Registers more versatile: !

-! MIPS arithmetic instructions can read 2,
operate on them, and write 1 per instruction!

-! MIPS data transfer only read or write 1
operand per instruction, and no operation!

CS61CL L03 MIPS I: Registers, Memory, Decisions (28)! Huddleston, Summer 2009 © UCB !

Administrivia!

•!HW2 due tomorrow.!

•!HW3 is up.!

•!Proj1 will be up soon… start early!

•!Future “Wednesday” assignments will
be moved to Thursday due dates.!

•!Check the newsgroup often and ask
there for help.!

CS61CL L03 MIPS I: Registers, Memory, Decisions (29)! Huddleston, Summer 2009 © UCB !

So Far...!

•!All instructions so far only manipulate
data…we#ve built a calculator of sorts.!

•!In order to build a computer, we need
ability to make decisions…!

•!C (and MIPS) provide labels to support
“goto” jumps to places in code.!

•!C: Horrible style; MIPS: Necessary!!

CS61CL L03 MIPS I: Registers, Memory, Decisions (30)! Huddleston, Summer 2009 © UCB !

MIPS Decision Instructions!

•!Decision instruction in MIPS:!

beq register1, register2, L1!

beq is “Branch if (registers are) equal” "
Same meaning as (using C): "
 if (register1==register2) goto L1

•!Complementary MIPS decision instruction

bne register1, register2, L1

bne is “Branch if (registers are) not equal” "
 Same meaning as (using C): "
 if (register1!=register2) goto L1!

•!Called conditional branches!

CS61CL L03 MIPS I: Registers, Memory, Decisions (31)! Huddleston, Summer 2009 © UCB !

MIPS Goto Instruction!

•!In addition to conditional branches,
MIPS has an unconditional branch:!

! !j label!

•!Called a Jump Instruction: jump (or
branch) directly to the given label
without needing to satisfy any condition!

•!Same meaning as (using C): goto
label!

•!Technically, it#s the same effect as:!

beq $0,$0,label

since it always satisfies the condition.!
CS61CL L03 MIPS I: Registers, Memory, Decisions (32)! Huddleston, Summer 2009 © UCB !

Compiling C if into MIPS (1/2)!

•!Use this mapping:"
 f: $s0 "
 g: $s1
 h: $s2 "
 i: $s3 "
 j: $s4!

702#$

i == j?

f=g+h f=g-h

84"9-/:$$

2$;<$=$
8#5>/:$$

2$<<$=$

•!?&@A29/BC."D1$

 if (i == j) f=g+h;
else f=g-h;

CS61CL L03 MIPS I: Registers, Memory, Decisions (33)! Huddleston, Summer 2009 © UCB !

Compiling C if into MIPS (2/2)!

•!Final compiled MIPS code:

 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to handle
decisions (branches). Generally not found in HLL
code.!

702#$

i == j?

f=g+h f=g-h

84"9-/:$$

2$;<$=$
8#5>/:$$

2$<<$=$

•!?&@A29/BC."D1$

 if (i == j) f=g+h;
else f=g-h;

•!Use this mapping:"
 f: $s0 g: $s1 h: $s2 i: $s3 j: $s4!

CS61CL L03 MIPS I: Registers, Memory, Decisions (34)! Huddleston, Summer 2009 © UCB !

Loops in C/Assembly (1/3)!

•!Simple loop in C; A[] is an array of ints!

 do { g = g + A[i];
 i = i + j;
} while (i != h);

•!Rewrite this as:!

 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;!

•!Use this mapping:"
 g, h, i, j, base of A
 $s1, $s2, $s3, $s4, $s5

CS61CL L03 MIPS I: Registers, Memory, Decisions (35)! Huddleston, Summer 2009 © UCB !

Loops in C/Assembly (2/3)!

•!Final compiled MIPS code:

Loop:sll $t1,$s3,2 # $t1= 4*I
 addu $t1,$t1,$s5 # $t1=addr A+4i
 lw $t1,0($t1) # $t1=A[i]
 addu $s1,$s1,$t1 # g=g+A[i]
 addu $s3,$s3,$s4 # i=i+j
 bne $s3,$s2,Loop # goto Loop
 # if i!=h

•!Original code:!

 Loop: g = g + A[i];
 i = i + j;
 if (i != h) goto Loop;

CS61CL L03 MIPS I: Registers, Memory, Decisions (36)! Huddleston, Summer 2009 © UCB !

Loops in C/Assembly (3/3)!

•!There are three types of loops in C:!

•!while

•!do… while

•!for

•!Each can be rewritten as either of the
other two, so the method used in the
previous example can be applied to
these loops as well.!

•!Key Concept: Though there are
multiple ways of writing a loop in
MIPS, the key to decision-making is
conditional branch!

CS61CL L03 MIPS I: Registers, Memory, Decisions (37)! Huddleston, Summer 2009 © UCB !

Inequalities in MIPS (1/4)!

•!Until now, we#ve only tested equalities "
(== and != in C). General programs
need to test < and > as well.!

•!Introduce MIPS Inequality Instruction:!

•!“Set on Less Than”!

•!Syntax: slt reg1,reg2,reg3

•!Meaning:!

! !if (reg2 < reg3)
 reg1 = 1;
 else reg1 = 0;

 “set” means “change to 1”, "
“reset” means “change to 0”.!

reg1 = (reg2 < reg3);

E"@/$#.2D3F$

CS61CL L03 MIPS I: Registers, Memory, Decisions (38)! Huddleston, Summer 2009 © UCB !

Inequalities in MIPS (2/4)!

•!How do we use this? Compile by hand: "
if (g < h) goto Less; #g:$s0, h:$s1!

•!Answer: compiled MIPS code…

 slt $t0,$s0,$s1 # $t0 = 1 if
g<h
bne $t0,$0,Less # goto Less
 # if $t0!=0
 # (if (g<h)) Less:

•!Register $0 always contains the value 0, so
bne and beq often use it for comparison
after an slt instruction.!

•! A slt ! bne pair means if(… < …)goto…!

CS61CL L03 MIPS I: Registers, Memory, Decisions (39)! Huddleston, Summer 2009 © UCB !

Inequalities in MIPS (3/4)!

•!Now we can implement <, "
but how do we implement >, ! and " ?!

•!We could add 3 more instructions, but:!

•!MIPS goal: Simpler is Better!

•!Can we implement ! in one or more
instructions using just slt and
branches?!

•!What about >?!

•!What about "?!

CS61CL L03 MIPS I: Registers, Memory, Decisions (40)! Huddleston, Summer 2009 © UCB !

Inequalities in MIPS (4/4)!

 # a:$s0, b:$s1
slt $t0,$s0,$s1 # $t0 = 1 if a<b
beq $t0,$0,skip # skip if a >= b
 <stuff> # do if a<b
skip:!

Two independent variations
possible:!

Use slt $t0,$s1,$s0 instead of !

slt $t0,$s0,$s1

Use bne instead of beq

CS61CL L03 MIPS I: Registers, Memory, Decisions (41)! Huddleston, Summer 2009 © UCB !

Immediates in Inequalities!

•!There is also an immediate version of
slt to test against constants: slti

•!Helpful in for loops

 if (g >= 1) goto Loop!

 Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
 # $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop
 # if $t0==0

 # (if (g>=1))

C!

M"
I"
P"

S!

An slt ! beq pair means if(… " …)goto…
CS61CL L03 MIPS I: Registers, Memory, Decisions (42)! Huddleston, Summer 2009 © UCB !

“And in Conclusion…”!

•!In MIPS Assembly Language:!

•!Registers replace C variables!

•!One Instruction (simple operation) per line!

•!Simpler is Better!

•!Smaller is Faster!

•!New Instructions:!
add, addi, sub!

•!New Registers:!

C Variables: $s0 - $s7!

Temporary Variables: $t0 - $t9!

Zero: $zero

CS61CL L03 MIPS I: Registers, Memory, Decisions (43)! Huddleston, Summer 2009 © UCB !

“And in Conclusion…”!

•!Memory is byte-addressable, but lw and sw
access one word at a time.!

•!A pointer (used by lw and sw) is just a
memory address, we can add to it or subtract
from it (using offset).!

•!A Decision allows us to decide what to
execute at run-time rather than compile-time.!

•!C Decisions are made using conditional
statements within if, while, do while, for.!

•!MIPS Decision making instructions are the
conditional branches: beq and bne.!

•!New Instructions:

lw, sw, beq, bne, j CS61CL L03 MIPS I: Registers, Memory, Decisions (44)! Huddleston, Summer 2009 © UCB !

“And in conclusion…”!

•!To help the conditional branches make
decisions concerning inequalities, we
introduce: “Set on Less Than” called "
slt, slti, sltu, sltiu

•!One can store and load (signed and
unsigned) bytes as well as words with
lb, lbu

•!Unsigned add/sub don#t cause overflow !

•!New MIPS Instructions: "
 sll, srl, lb, lbu
 slt, slti, sltu, sltiu
 addu, addiu, subu

CS61CL L03 MIPS I: Registers, Memory, Decisions (45)! Huddleston, Summer 2009 © UCB !

Bonus slides!

•!These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!

•!The slides will appear in the order they
would have in the normal presentation!

CS61CL L03 MIPS I: Registers, Memory, Decisions (46)! Huddleston, Summer 2009 © UCB !

Example: The C Switch Statement (1/3)!

•!Choose among four alternatives depending

on whether k has the value 0, 1, 2 or 3.

Compile this C code:"

switch (k) {

 case 0: f=i+j; break; /* k=0 */

 case 1: f=g+h; break; /* k=1 */

 case 2: f=g–h; break; /* k=2 */

 case 3: f=i–j; break; /* k=3 */

}!

CS61CL L03 MIPS I: Registers, Memory, Decisions (47)! Huddleston, Summer 2009 © UCB !

Example: The C Switch Statement (2/3)!

•!This is complicated, so simplify.!

•!Rewrite it as a chain of if-else
statements, which we already know
how to compile:!

if(k==0) f=i+j;
 else if(k==1) f=g+h;
 else if(k==2) f=g–h;
 else if(k==3) f=i–j;

•!Use this mapping:!

 f:$s0, g:$s1, h:$s2,
i:$s3, j:$s4, k:$s5!

CS61CL L03 MIPS I: Registers, Memory, Decisions (48)! Huddleston, Summer 2009 © UCB !

Example: The C Switch Statement (3/3)!

•!Final compiled MIPS code:"
 bne $s5,$0,L1 # branch k!=0
 add $s0,$s3,$s4 #k==0 so f=i+j
 j Exit # end of case so Exit
L1: addi $t0,$s5,-1 # $t0=k-1
 bne $t0,$0,L2 # branch k!=1
 add $s0,$s1,$s2 #k==1 so f=g+h
 j Exit # end of case so Exit
L2: addi $t0,$s5,-2 # $t0=k-2
 bne $t0,$0,L3 # branch k!=2
 sub $s0,$s1,$s2 #k==2 so f=g-h
 j Exit # end of case so Exit
L3: addi $t0,$s5,-3 # $t0=k-3
 bne $t0,$0,Exit # branch k!=3
 sub $s0,$s3,$s4 #k==3 so f=i-j
Exit:!

CS61CL L03 MIPS I: Registers, Memory, Decisions (49)! Huddleston, Summer 2009 © UCB !

Immediates!

•!There is no Subtract Immediate in
MIPS: Why?!

•!Limit types of operations that can be
done to absolute minimum !

•!if an operation can be decomposed into a
simpler operation, don#t include it!

•!addi …, -X = subi …, X => so no subi!

•!addi $s0,$s1,-10 (in MIPS)

 f = g - 10 (in C)!

where MIPS registers $s0,$s1 are
associated with C variables f, g

CS61CL L03 MIPS I: Registers, Memory, Decisions (50)! Huddleston, Summer 2009 © UCB !

Anatomy: 5 components of any Computer!

$G5&H/--&5$

?&@A>#/5$

?&D#5&9$
"#$%&'()*$

!"#"A"#.$
I/32-#/5-$

J/@&5C$!/K2H/-$

LDA>#$

M>#A>#$

N./-/$"5/$O1"#"$#5"D-4/5P$2D-#5>H#2&D-F$

I/32-#/5-$"5/$2D$#./$1"#"A"#.$&4$#./$

A5&H/--&5Q$$24$&A/5"D1-$"5/$2D$@/@&5CR$'/$

@>-#$#5"D-4/5$#./@$#&$#./$A5&H/--&5$#&$

&A/5"#/$&D$#./@R$"D1$#./D$#5"D-4/5$B"HS$#&$

@/@&5C$'./D$1&D/T$

CS61CL L03 MIPS I: Registers, Memory, Decisions (51)! Huddleston, Summer 2009 © UCB !

Addressing: Byte vs. Word!

•!Every word in memory has an address,
similar to an index in an array!

•!Early computers numbered words like C
numbers elements of an array:!

•!Memory[0], Memory[1], Memory[2], …

•!Computers needed to access 8-bit
bytes as well as words (4 bytes/word)!

•!Today machines address memory as
bytes, (i.e., “Byte Addressed”) hence
32-bit (4 byte) word addresses differ by
4!
•!Memory[0], Memory[4], Memory[8]

+&,,-.!/0-!#"115/--)!12!&!31%.!

CS61CL L03 MIPS I: Registers, Memory, Decisions (52)! Huddleston, Summer 2009 © UCB !

Compilation with Memory!

•!What offset in lw to select A[5] in C?!

•! 4x5=20 to select A[5]: byte v. word !

•!Compile by hand using registers: "
!g = h + A[5];!

•! g: $s1, h: $s2, $s3: base address of A !

•!1st transfer from memory to register:!

!lw $t0,20($s3) # $t0 gets
A[5]!

•!Add 20 to $s3 to select A[5], put into $t0!

•!Next add it to h and place in g "
add $s1,$s2,$t0 # $s1 = h+A[5] CS61CL L03 MIPS I: Registers, Memory, Decisions (53)! Huddleston, Summer 2009 © UCB !

C Decisions: if Statements!

•!2 kinds of if statements in C!

if (condition) clause!

if (condition) clause1 else clause2!

•!Rearrange 2nd if into following:!

 if (condition) goto L1;
 clause2;"
 ! goto L2;

 L1: clause1;!

 L2:

•!Not as elegant as if-else, but same
meaning!

CS61CL L03 MIPS I: Registers, Memory, Decisions (54)! Huddleston, Summer 2009 © UCB !

Last time: Loading, Storing bytes 1/2!

•!In addition to word data transfers "
(lw, sw), MIPS has byte data transfers:!

•!load byte: lb!

•!store byte: sb!

•!same format as lw, sw

•!E.g., lb $s0, 3($s1)

•!contents of memory location with
address = sum of “3” + contents of
register s1 is copied to the low byte
position of register s0.!

CS61CL L03 MIPS I: Registers, Memory, Decisions (55)! Huddleston, Summer 2009 © UCB !

x

Loading, Storing bytes 2/2!

•!What do with other 24 bits in the 32 bit
register?!

•!lb: sign extends to fill upper 24 bits!

byte"

loaded!…is copied to “sign-extend”!

This bit!

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

"! Normally don#t want to sign extend
chars!

"! MIPS instruction that doesn#t"
 sign extend when loading bytes:!

"! load byte unsigned: lbu CS61CL L03 MIPS I: Registers, Memory, Decisions (56)! Huddleston, Summer 2009 © UCB !

Overflow in Arithmetic (1/2)!

•!Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.!

•!Example (4-bit unsigned numbers):!

! !+15 ! ! 1111!

! ! +3 ! ! 0011!

! !+18 ! ! 10010!

•!But we don#t have room for 5-bit solution,
so the solution would be 0010, which is
+2, and wrong.!

CS61CL L03 MIPS I: Registers, Memory, Decisions (57)! Huddleston, Summer 2009 © UCB !

Overflow in Arithmetic (2/2)!

•!Some languages detect overflow (Ada), "
some don#t (C)!

•!MIPS solution is 2 kinds of arithmetic
instructs:!

•!These cause overflow to be detected!

-! add (add)!

-! add immediate (addi) !

-! subtract (sub)!

•!These do not cause overflow detection !

-! add unsigned (addu)!

-! add immediate unsigned (addiu) !

-! subtract unsigned (subu)!

•!Compiler selects appropriate arithmetic!

•!MIPS C compilers produce addu, addiu,

CS61CL L03 MIPS I: Registers, Memory, Decisions (58)! Huddleston, Summer 2009 © UCB !

What about unsigned numbers?!

•!Also unsigned inequality instructions:!

! !sltu, sltiu!

…which sets result to 1 or 0 depending
on unsigned comparisons!

•!What is value of $t0, $t1?!

($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)!

 slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS61CL L03 MIPS I: Registers, Memory, Decisions (59)! Huddleston, Summer 2009 © UCB !

MIPS Signed vs. Unsigned – diff meanings!!

•!MIPS terms Signed/Unsigned
“overloaded”:!

•!Do/Don't sign extend!

-! (lb, lbu)

•!Do/Don't overflow !

-! (add, addi, sub, mult, div)

-! (addu, addiu, subu, multu, divu)

•!Do signed/unsigned compare!

-! (slt, slti/sltu, sltiu)

CS61CL L03 MIPS I: Registers, Memory, Decisions (60)! Huddleston, Summer 2009 © UCB !

Two “Logic” Instructions!

•!Here are 2 more new instructions!

•!Shift Left: sll $s1,$s2,2 #s1=s2<<2

•!Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0#s on right; << in C!

•!Before: !0000 0002hex "
0000 0000 0000 0000 0000 0000 0000 0010two!

•!After: !0000 0008hex "
0000 0000 0000 0000 0000 0000 0000 1000two!

•!What arithmetic effect does shift left have?!

•!Shift Right: srl is opposite shift; >>!

