inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures

Lecture #3 - Dynamic Storage

2009-06-29

Jeremy Huddleston

- Pointers and arrays are virtually same
- C knows how to increment pointers
- C is an efficient language, with little protection
 - Array bounds not checked
 - Variables not automatically initialized
- (Beware) The cost of efficiency is more overhead for the programmer.
 - "C gives you a lot of extra rope but be careful not to hang yourself with it!"

Dynamic Memory Allocation (1/4)

- C has operator sizeof() which gives size in bytes (of type or variable)
- Assume size of objects can be misleading and is bad style, so use sizeof(type)
 - Many years ago an int was 16 bits, and programs were written with this assumption.
 - What is the size of integers now?
- "sizeof" knows the size of arrays:

```
int ar[3]; // Or: int ar[] = \{54, 47, 99\}
sizeof(ar) \Rightarrow 12
```

• ...as well for arrays whose size is determined at run-time:

```
int n = 3;
int ar[n]; // Or: int ar[fun_that_returns_3()];
sizeof(ar) => 12
```


Dynamic Memory Allocation (2/4)

- To allocate room for something new to point to, use malloc() (with the help of a typecast and sizeof):
 - ptr = (int *) malloc (sizeof(int));
 - Now, ptr points to a space somewhere in memory of size (sizeof(int)) in bytes.
 - (int *) simply tells the compiler what will go into that space (called a typecast).
- malloc is almost never used for 1 var

ptr = (int *) malloc (n*sizeof(int));

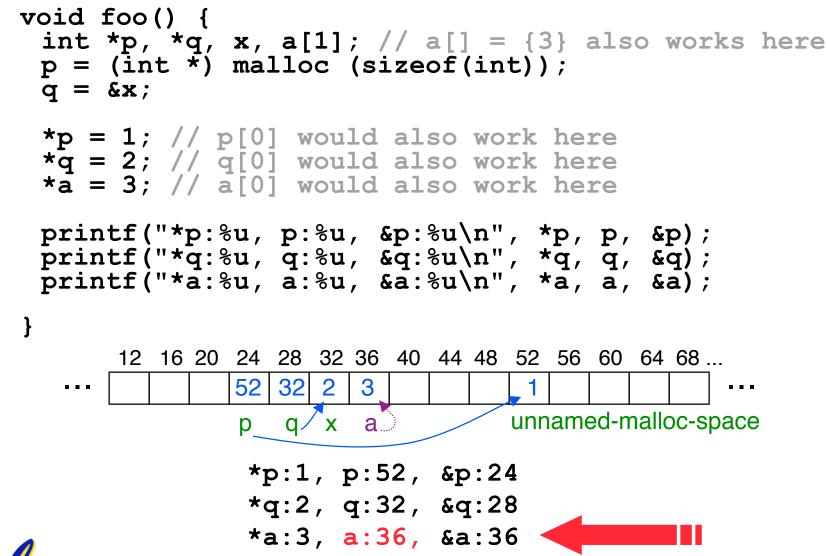
This allocates an array of n integers.

Dynamic Memory Allocation (3/4)

- Once malloc() is called, the memory location contains garbage, so don't use it until you've set its value.
- After dynamically allocating space, we must dynamically free it:

free(ptr);

- Use this command to clean up.
 - Even though the program frees all memory on exit (or when main returns), don't be lazy!
 - You never know when your main will get transformed into a subroutine!

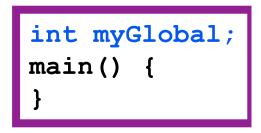


Dynamic Memory Allocation (4/4)

- The following two things will cause your program to crash or behave strangely later on, and cause VERY VERY hard to figure out bugs:
 - free () ing the same piece of memory twice
 - calling free() on something you didn't get back from malloc()
- The runtime does not check for these mistakes
 - Memory allocation is so performance-critical that there just isn't time to do this
 - The usual result is that you corrupt the memory allocator's internal structure
 - You won't find out until much later on, in a totally unrelated part of your code!

Arrays not implemented as you'd think

Don't forget the globals!

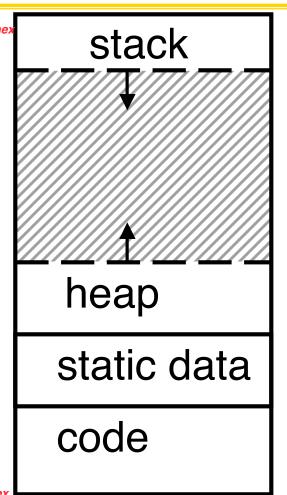

- Remember:
 - Structure declaration <u>does not</u> allocate memory
 - Variable declaration <u>does</u> allocate memory
- So far we have talked about several different ways to allocate memory for data:
 - **1. Declaration of a local variable**

int i; struct Node list; char *string; int ar[n];

2. "Dynamic" allocation at runtime by calling allocation function (alloc).

ptr = (struct Node *) malloc(sizeof(struct Node)*n);

- One more possibility exists...
 - 3. Data declared outside of any procedure (i.e., before main).
 - Similar to #1 above, but has "global" scope.



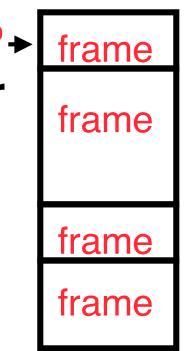
•

C Memory Management

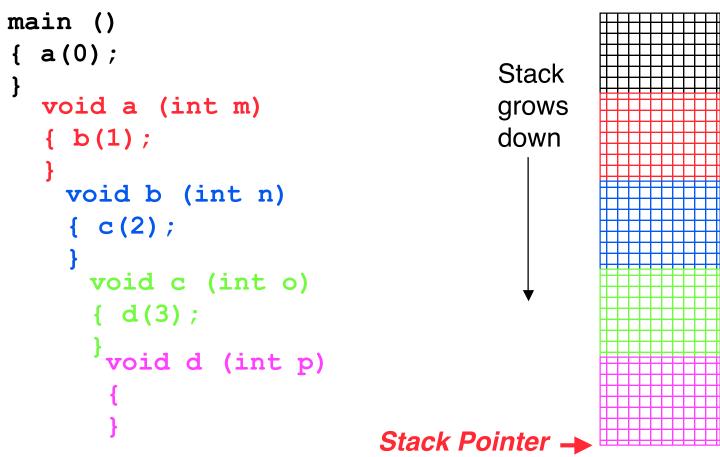
- A program's *address^{FFFF FFFF} space* contains 4 regions:
 - stack: local variables, grows downward
 - heap: space requested for pointers via malloc(); resizes dynamically, grows upward
 - static data: variables declared outside main, does not grow or shrink ~ 0_{he}
 - code: loaded when program starts, does not change

For now, OS somehow prevents accesses between stack and heap (gray hash lines). Wait for virtual memory Huddleston, Summer 2009 © UCB

Where are variables allocated?

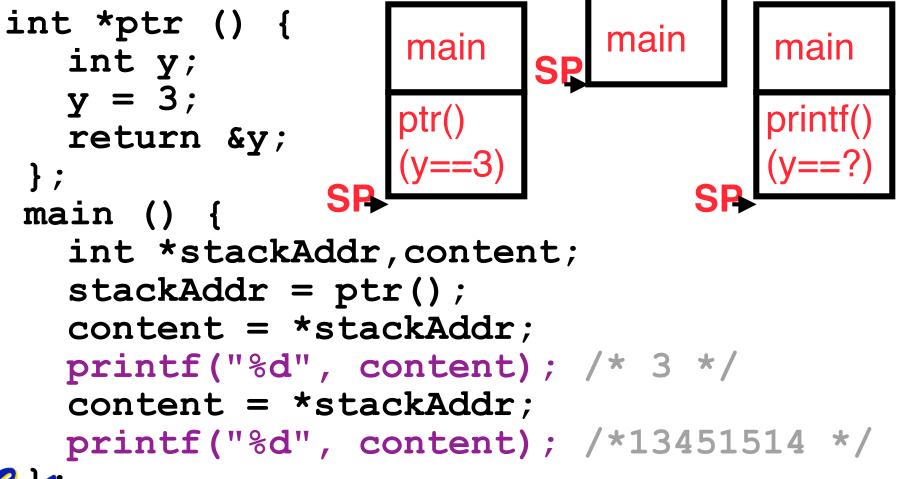

- If declared <u>outside</u> a procedure, allocated in "static" storage
- If declared inside procedure, allocated on the "stack" and freed when procedure returns.
 - •NB:main() is a procedure

Huddleston, Summer 2009 © UCB


The Stack

- Stack frame includes:
 - Return "instruction" address
 - Parameters
 - Space for other local variables
- Stack frames contiguous
 SPblocks of memory; stack pointer tells where top stack frame is
- When procedure ends, stack frame is tossed off the stack; frees memory for future stack frames

Last In, First Out (LIFO) data structure



stack

Who cares about stack management?

 Pointers in C allow access to deallocated memory, leading to hard-to-find bugs !

The Heap (Dynamic memory)

- Large pool of memory, not allocated in contiguous order
 - back-to-back requests for heap memory could result blocks very far apart
 - where Java new command allocates memory
- In C, specify number of <u>bytes</u> of memory explicitly to allocate item

int *ptr; ptr = (int *) malloc(sizeof(int)); /* malloc returns type (void *), so need to cast to right type */

•malloc(): Allocates raw, uninitialized memory from heap

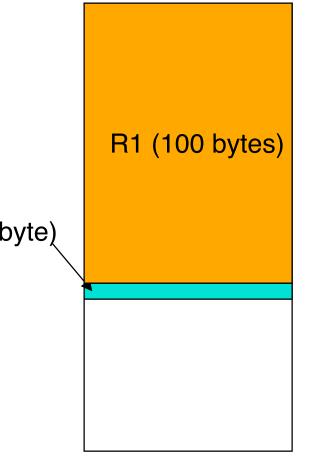
CS61CL L02 Dynamic Storage (14)

Memory Management

- How do we manage memory?
- Code, Static storage are easy: they never grow or shrink
- Stack space is also easy: stack frames are created and destroyed in last-in, first-out (LIFO) order
- Managing the heap is tricky: memory can be allocated / deallocated at any time

Heap Management Requirements

- Want malloc() and free() to run quickly.
- Want minimal memory overhead
- Want to avoid *fragmentation** when most of our free memory is in many small chunks
 - In this case, we might have many free bytes but not be able to satisfy a large request since the free bytes are not contiguous in memory.

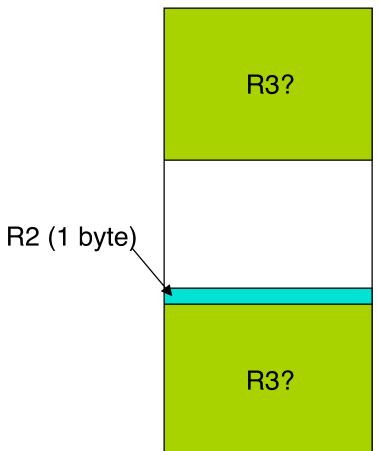


* This is technically called *external fragmention*

Heap Management

An example

- Request R1 for 100
 bytes
- Request R2 for 1 byte
- Memory from R1 is
 R2 (1 byte)
 freed
- Request R3 for 50
 bytes



Heap Management

- Request R1 for 100
 bytes
- Request R2 for 1 byte
- Memory from R1 is
 Freed
- Request R3 for 50
 bytes

• From Section 8.7 of K&R

- Code in the book uses some C language features we haven't discussed and is written in a very terse style, don't worry if you can't decipher the code
- Each block of memory is preceded by a header that has two fields: size of the block and a pointer to the next block
- All free blocks are kept in a circular linked list, the pointer field is unused in an allocated block

- malloc() searches the free list for a block that is big enough. If none is found, more memory is requested from the operating system. If what it gets can't satisfy the request, it fails.
- free () checks if the blocks adjacent to the freed block are also free
 - If so, adjacent free blocks are merged (coalesced) into a single, larger free block
 - Otherwise, the freed block is just added to the free list

Choosing a block in malloc()

- If there are multiple free blocks of memory that are big enough for some request, how do we choose which one to use?
 - best-fit: choose the smallest block that is big enough for the request
 - first-fit: choose the first block we see that is big enough
 - next-fit: like first-fit but remember where we finished searching and resume searching from there

- A different approach to memory management (used in GNU libc)
- Divide blocks in to "large" and "small" by picking an arbitrary threshold size. Blocks larger than this threshold are managed with a freelist (as before).
- For small blocks, allocate blocks in sizes that are powers of 2
 - e.g., if program wants to allocate 20 bytes, actually give it 32 bytes

- Bookkeeping for small blocks is relatively easy: just use a *bitmap* for each range of blocks of the same size
- Allocating is easy and fast: compute the size of the block to allocate and find a free bit in the corresponding bitmap.
- Freeing is also easy and fast: figure out which slab the address belongs to and clear the corresponding bit.

16 byte blocks:				
32 byte blocks:				
64 byte blocks:				

16 byte block bitmap: 11011000

32 byte block bitmap: 0111

64 byte block bitmap: 00

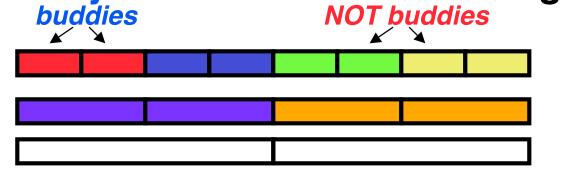
Slab Allocator Tradeoffs

- Extremely fast for small blocks.
- Slower for large blocks
 - But presumably the program will take more time to do something with a large block so the overhead is not as critical.
- Minimal space overhead
- No fragmentation (as we defined it before) for small blocks, but still have wasted space!

Internal vs. External Fragmentation

- With the slab allocator, difference between requested size and next power of 2 is wasted
 - e.g., if program wants to allocate 20 bytes and we give it a 32 byte block, 12 bytes are unused.
- We also refer to this as fragmentation, but call it *internal* fragmentation since the wasted space is actually within an allocated block.

• External fragmentation: wasted space between allocated blocks.



- Yet another memory management technique (used in Linux kernel)
- Like GNU's "slab allocator", but only allocate blocks in sizes that are powers of 2 (internal fragmentation is possible)
- Keep separate free lists for each size
 - e.g., separate free lists for 16 byte, 32 byte, 64 byte blocks, etc.

Buddy System

- If no free block of size n is available, find a block of size 2n and split it in to two blocks of size n
- When a block of size n is freed, if its neighbor of size n is also free, combine the blocks in to a single block of size 2n
 - **Buddy** is block in other half larger block

Same speed advantages as slab allocator

- So which memory management scheme (K&R, slab, buddy) is best?
 - There is no single best approach for every application.
 - Different applications have different allocation / deallocation patterns.
 - A scheme that works well for one application may work poorly for another application.

Automatic Memory Management

- Dynamically allocated memory is difficult to track – why not track it automatically?
- If we can keep track of what memory is in use, we can reclaim everything else.
 - Unreachable memory is called *garbage*, the process of reclaiming it is called *garbage collection*.
- So how do we track what is in use?

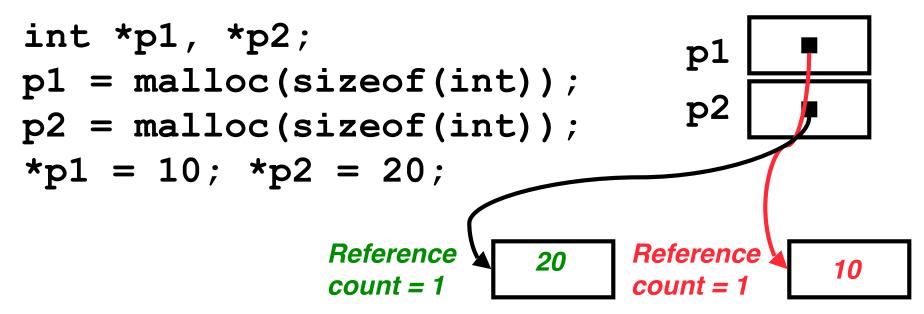
Tracking Memory Usage

- Techniques depend heavily on the programming language and rely on help from the compiler.
- Start with all pointers in global variables and local variables (<u>root set</u>).
- Recursively examine dynamically allocated objects we see a pointer to.
 - We can do this in constant space by reversing the pointers on the way down
- How do we recursively find pointers in dynamically allocated memory?

Tracking Memory Usage

- Again, it depends heavily on the programming language and compiler.
- Could have only a single type of dynamically allocated object in memory
 - E.g., simple Lisp/Scheme system with only cons cells (61A's Scheme not "simple")
- Could use a strongly typed language (e.g., Java)
 - Don't allow conversion (casting) between arbitrary types.
 - C/C++ are not strongly typed.
- Here are 3 schemes to collect garbage

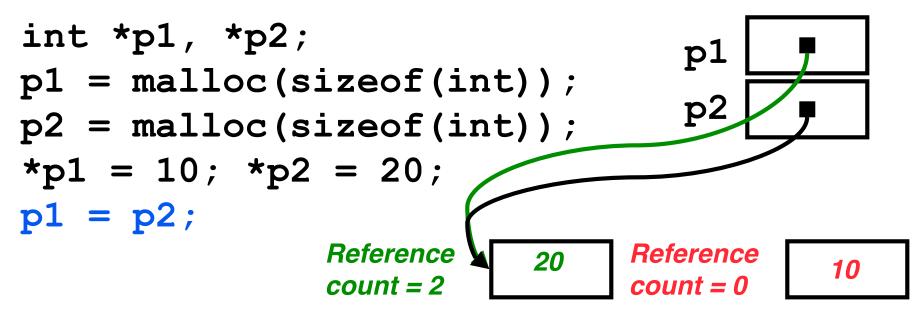
Scheme 1: Reference Counting


- For every chunk of dynamically allocated memory, keep a count of number of pointers that point to it.
- When the count reaches 0, reclaim.
- Simple assignment statements can result in a lot of work, since may update reference counts of many items

Reference Counting Example

 For every chunk of dynamically allocated memory, keep a count of number of pointers that point to it.

• When the count reaches 0, reclaim.



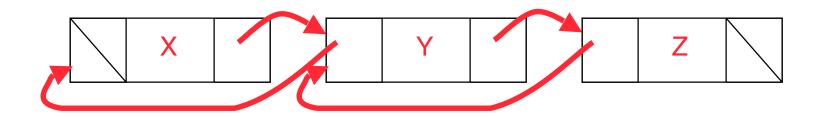
CS61CL L02 Dynamic Storage (34)

Reference Counting Example

 For every chunk of dynamically allocated memory, keep a count of number of pointers that point to it.

• When the count reaches 0, reclaim.

Reference Counting (p1, p2 are pointers)


$$p1 = p2;$$

- Increment reference count for p2
- If p1 held a valid value, decrement its reference count
- If the reference count for p1 is now 0, reclaim the storage it points to.
 - If the storage pointed to by p1 held other pointers, decrement all of their reference counts, and so on...
- Must also decrement reference count when local variables cease to exist.

Reference Counting Flaws

- Extra overhead added to assignments, as well as ending a block of code.
- Does not work for circular structures!
 - E.g., doubly linked list:

Scheme 2: Mark and Sweep Garbage Col.

- Keep allocating new memory until memory is exhausted, then try to find unused memory.
- Consider objects in heap a graph, chunks of memory (objects) are graph nodes, pointers to memory are graph edges.
 - Edge from A to $B \Rightarrow A$ stores pointer to B
- Can start with the root set, perform a graph traversal, find all usable memory!
- 2 Phases:
 - 1. Mark used nodes
 - 2. Sweep free ones, returning list of free nodes

Mark and Sweep

Graph traversal is relatively easy to implement recursively

```
void traverse(struct graph_node *node) {
    /* visit this node */
    foreach child in node->children {
        traverse(child);
    }
}
```

- But with recursion, state is stored on the execution stack.
 - Garbage collection is invoked when not much memory left
- As before, we could traverse in constant space (by reversing pointers)

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

CS61CL L02 Dynamic Storage (40)

Binky Pointer Video (thanks to NP @ SU)

Pointer Fun with Binky

by Nick Parlante This is document 104 in the Stanford CS Education Library — please see cslibrary.stanford.edu for this video, its associated documents, and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright panel for redistribution terms. Carpe Post Meridiem!

Check out this video on the class website (click the link for this lecture)

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

- 1. Kid meets giant Texas people exercising zen-like yoga. Rolf O
- 2. Kind men give ten percent extra, zestfully, youthfully. Hava E
- 3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. Gary M
- 4. Kindness means giving, teaching, permeating excess zeal yourself. Hava E
- 5. Killing messengers gives terrible people exactly zero, yo
- 6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth
- 7. Kissing mediocre girls/guys teaches people (to) expect zero (from) you
- 8. Kinky Mean Girls Teach Penis-Extending Zen Yoga
- 9. Kissing Mel Gibson, Teddy Pendergrass exclaimed: "Zesty, yo!" Dan G
- **10.** Kissing me gives ten percent extra zeal & youth! Dan G (borrowing parts)

C structures : **Overview**

- A struct is a data structure composed from simpler data types.
 - Like a class in Java/C++ but without methods or inheritance.

```
struct point { /* type definition */
    int x;
    int y;
};
```

```
void PrintPoint(struct point p)
{ As always in C, the argument is passed by "value" - a copy is made.
        printf("(%d,%d)", p.x, p.y);
}
```

```
struct point p1 = {0,10}; /* x=0, y=10 */
```

```
PrintPoint(p1);
```

C structures: Pointers to them

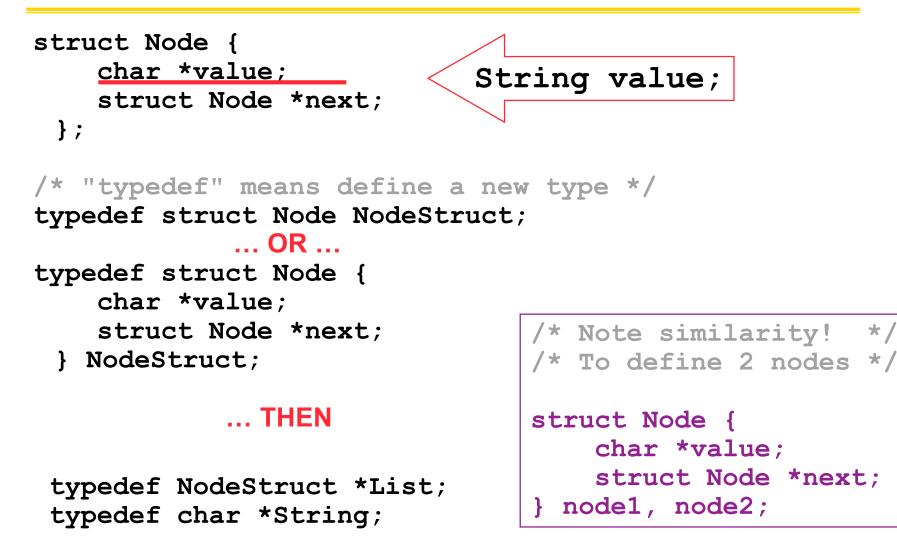
- Usually, more efficient to pass a pointer to the struct.
- The C arrow operator (->) dereferences and extracts a structure field with a single operator.
- The following are equivalent:

struct point *p;
 /* code to assign to pointer */
printf("x is %d\n", (*p).x);
printf("x is %d\n", p->x);

How big are structs?

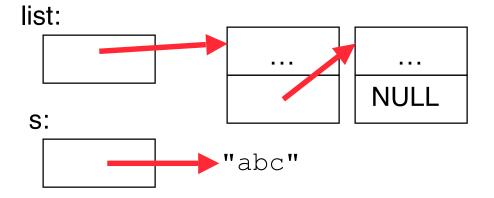
- Recall C operator sizeof() which gives size in bytes (of type or variable)
- •How big is sizeof(p)?

```
struct p {
    char x;
    int y;
};
```

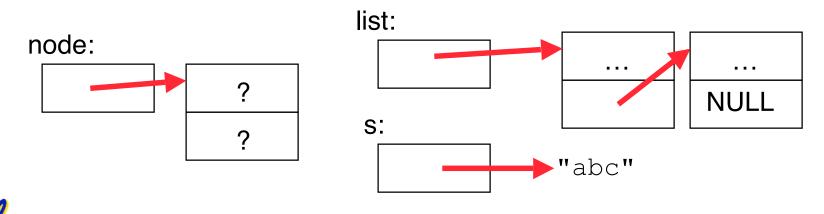

- 5 bytes? 8 bytes?
- Compiler may word align integer y

- Let's look at an example of using structures, pointers, malloc(), and free() to implement a linked list of strings.
 - /* node structure for linked list */
 struct Node {
 char *value;
 struct Node *next;
 };
 Recursive
 definition!

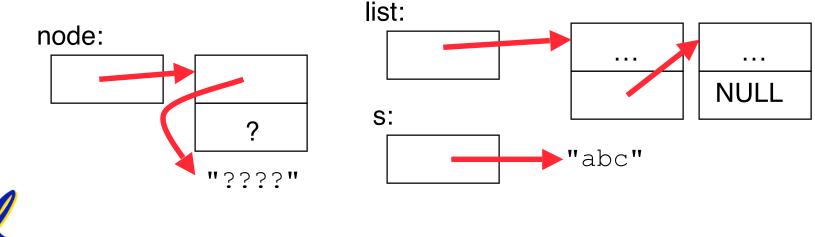
typedef simplifies the code



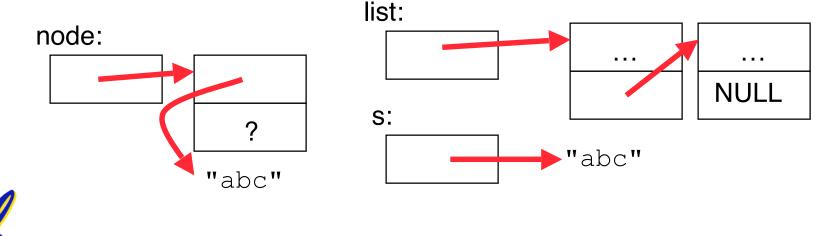

```
/* Add a string to an existing list */
List cons(String s, List list)
ł
  List node = (List) malloc(sizeof(NodeStruct));
  node->value = (String) malloc (strlen(s) + 1);
  strcpy(node->value, s);
  node->next = list;
  return node;
}
   String s1 = "abc", s2 = "cde";
   List theList = NULL;
   theList = cons(s2, theList);
   theList = cons(s1, theList);
/* or, just like (cons s1 (cons s2 nil)) */
   theList = cons(s1, cons(s2, NULL));
```



```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
   List node = (List) malloc(sizeof(NodeStruct));
   node->value = (String) malloc (strlen(s) + 1);
   strcpy(node->value, s);
   node->next = list;
   return node;
}
```

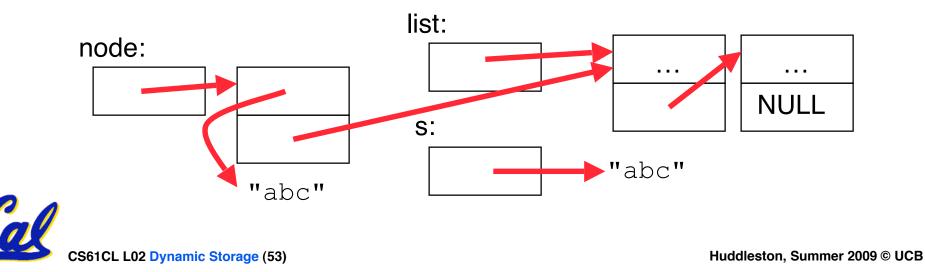
node:



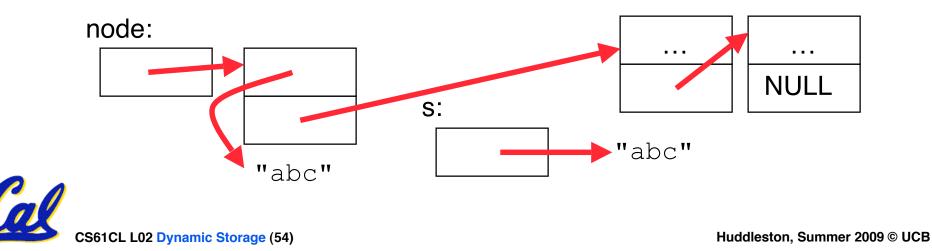

```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
   List node = (List) malloc(sizeof(NodeStruct));
   node->value = (String) malloc (strlen(s) + 1);
   strcpy(node->value, s);
   node->next = list;
   return node;
}
```




```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
   List node = (List) malloc(sizeof(NodeStruct));
   node->value = (String) malloc (strlen(s) + 1);
   strcpy(node->value, s);
   node->next = list;
   return node;
}
```


```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
  List node = (List) malloc(sizeof(NodeStruct));
  node->value = (String) malloc (strlen(s) + 1);
  strcpy(node->value, s);
  node->next = list;
  return node;
}
```



CS61CL L02 Dynamic Storage (52)

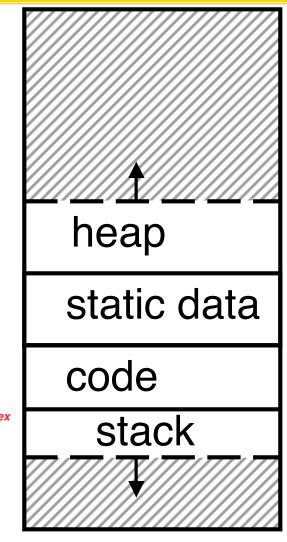
```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
   List node = (List) malloc(sizeof(NodeStruct));
   node->value = (String) malloc (strlen(s) + 1);
   strcpy(node->value, s);
   node->next = list;
   return node;
}
```



```
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
  List node = (List) malloc(sizeof(NodeStruct));
  node->value = (String) malloc (strlen(s) + 1);
  strcpy(node->value, s);
  node->next = list;
  return node;
}
```


C Memory Management

- C has 3 primary pools of memory
 - <u>Static storage</u>: global variable storage, basically permanent, entire program run
 - The Stack: local variable storage, parameters, return address (location of "activation records" in Java or "stack frame" in C)
 - <u>The Heap</u> (dynamic malloc storage): data lives until deallocated by programmer
- C requires knowing where objects are in memory, otherwise things don't work as expected

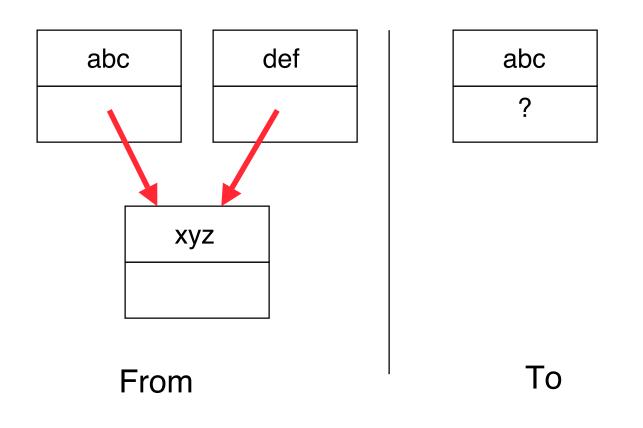

Java hides location of objects

Intel 80x86 C Memory Management

- heap: space requested for pointers via malloc(); resizes dynamically, grows upward
- static data: variables declared outside main, does not grow or shrink
- code: loaded when program starts, does not change

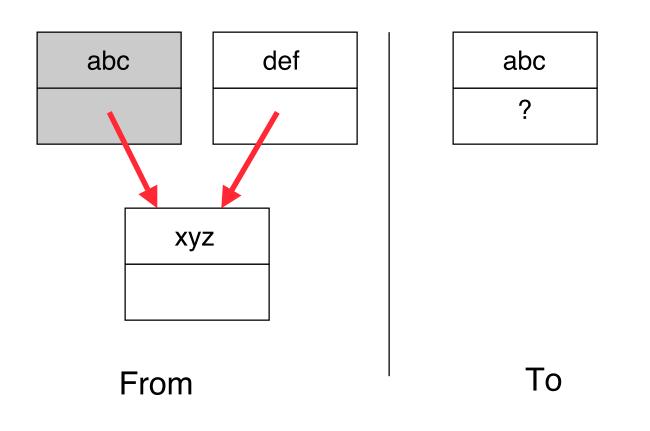
Tradeoffs of allocation policies

- Best-fit: Tries to limit fragmentation but at the cost of time (must examine all free blocks for each malloc). Leaves lots of small blocks (why?)
- First-fit: Quicker than best-fit (why?) but potentially more fragmentation. Tends to concentrate small blocks at the beginning of the free list (why?)
- Next-fit: Does not concentrate small blocks at front like first-fit, should be faster as a result.

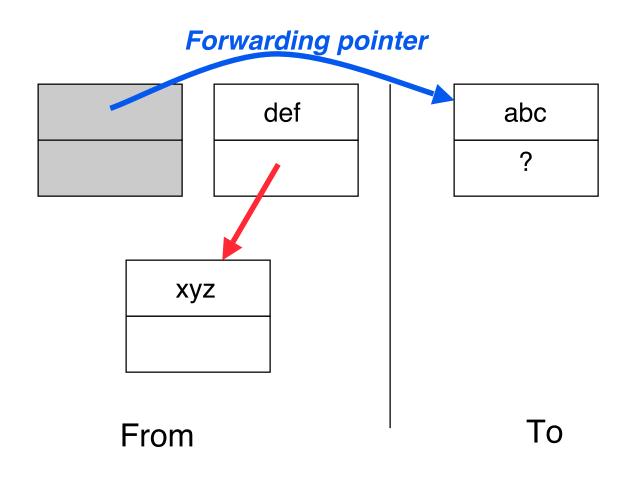


Scheme 3: Copying Garbage Collection

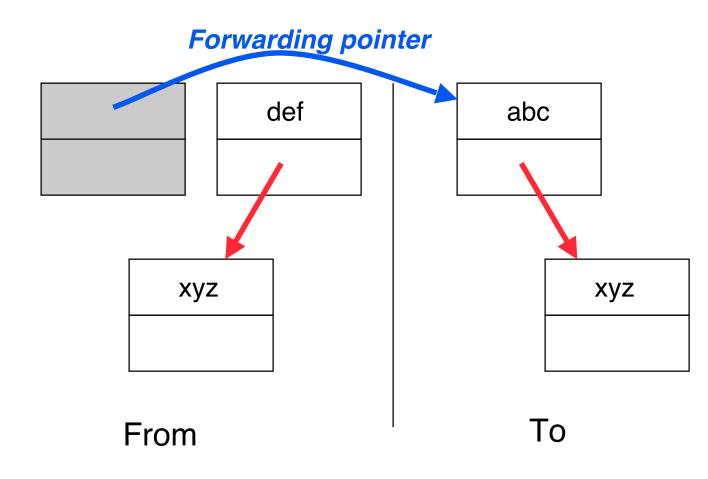
- Divide memory into two spaces, only one in use at any time.
- When active space is exhausted, traverse the active space, copying all objects to the other space, then make the new space active and continue.
 - Only reachable objects are copied!
- Use "forwarding pointers" to keep consistency
 - Simple solution to avoiding having to have a table of old and new addresses, and to mark objects already copied (see bonus slides)



Forwarding Pointers: 1st copy "abc"

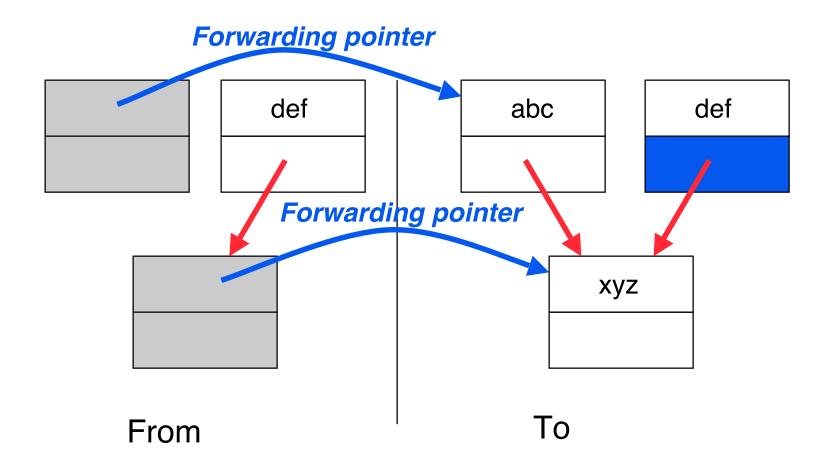


Forwarding Pointers: leave ptr to new abc



Forwarding Pointers : now copy "xyz"

Forwarding Pointers: leave ptr to new xyz


Forwarding Pointers: now copy "def"

Since xyz was already copied, def uses xyz's forwarding pointer to find its new location

Forwarding Pointers

Since xyz was already copied, def uses xyz's forwarding pointer to find its new location

