
CS61CL L02 Dynamic Storage (1) Huddleston, Summer 2009 © UCB

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c
CS61CL : Machine Structures

Lecture #3 - Dynamic Storage

2009-06-29

CS61CL L02 Dynamic Storage (2) Huddleston, Summer 2009 © UCB

Review

•Pointers and arrays are virtually same

•C knows how to increment pointers

•C is an efficient language, with little
protection

• Array bounds not checked

• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

CS61CL L02 Dynamic Storage (3) Huddleston, Summer 2009 © UCB

Dynamic Memory Allocation (1/4)

• C has operator sizeof() which gives size in bytes (of type or
variable)

• Assume size of objects can be misleading and is bad style, so
use sizeof(type)

• Many years ago an int was 16 bits, and programs were written
with this assumption.

• What is the size of integers now?

• “sizeof” knows the size of arrays:

int ar[3]; // Or: int ar[] = {54, 47, 99}

sizeof(ar) ! 12

• …as well for arrays whose size is determined at run-time:

int n = 3;

int ar[n]; // Or: int ar[fun_that_returns_3()];

sizeof(ar) ! 12

CS61CL L02 Dynamic Storage (4) Huddleston, Summer 2009 © UCB

Dynamic Memory Allocation (2/4)

•To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof):

ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.

•(int *) simply tells the compiler what will
go into that space (called a typecast).

•malloc is almost never used for 1 var

ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.

CS61CL L02 Dynamic Storage (5) Huddleston, Summer 2009 © UCB

Dynamic Memory Allocation (3/4)

•Once malloc() is called, the memory
location contains garbage, so don!t
use it until you!ve set its value.

•After dynamically allocating space, we
must dynamically free it:

free(ptr);

•Use this command to clean up.

• Even though the program frees all
memory on exit (or when main returns),
don!t be lazy!

• You never know when your main will get
transformed into a subroutine!

CS61CL L02 Dynamic Storage (6) Huddleston, Summer 2009 © UCB

Dynamic Memory Allocation (4/4)

• The following two things will cause your program
to crash or behave strangely later on, and cause
VERY VERY hard to figure out bugs:

•free()ing the same piece of memory twice

• calling free() on something you didn!t get back from
malloc()

• The runtime does not check for these mistakes

• Memory allocation is so performance-critical that there
just isn!t time to do this

• The usual result is that you corrupt the memory
allocator!s internal structure

• You won!t find out until much later on, in a totally
unrelated part of your code!

CS61CL L02 Dynamic Storage (7) Huddleston, Summer 2009 © UCB

Arrays not implemented as you!d think

void foo() {
int *p, *q, x, a[1]; // a[] = {3} also works here
p = (int *) malloc (sizeof(int));
q = &x;

*p = 1; // p[0] would also work here
*q = 2; // q[0] would also work here
*a = 3; // a[0] would also work here

printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

? ?
12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 ...

p q x a

? ? ?

unnamed-malloc-space

52 32 2 3 1

*p:1, p:52, &p:24
*q:2, q:32, &q:28
*a:3, a:36, &a:36

CS61CL L02 Dynamic Storage (8) Huddleston, Summer 2009 © UCB

Don!t forget the globals!

• Remember:

• Structure declaration does not allocate memory

• Variable declaration does allocate memory

• So far we have talked about several different ways to allocate
memory for data:

1. Declaration of a local variable
int i; struct Node list; char *string; int ar[n];

2. “Dynamic” allocation at runtime by calling allocation function
(alloc).

 ptr = (struct Node *) malloc(sizeof(struct Node)*n);

• One more possibility exists…

3. Data declared outside of any procedure
(i.e., before main).

• Similar to #1 above, but has “global” scope.

int myGlobal;
main() {
}

CS61CL L02 Dynamic Storage (9) Huddleston, Summer 2009 © UCB

C Memory Management

•A program!s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts,
does not change

code

static data

heap

stack

For now, OS somehow

prevents accesses between

stack and heap (gray hash

lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

CS61CL L02 Dynamic Storage (10) Huddleston, Summer 2009 © UCB

Where are variables allocated?

• If declared outside a procedure,
allocated in “static” storage

• If declared inside procedure,
allocated on the “stack”
and freed when procedure returns.

• NB: main() is a procedure

int myGlobal;
main() {
 int myTemp;
}

CS61CL L02 Dynamic Storage (11) Huddleston, Summer 2009 © UCB

The Stack

•Stack frame includes:

• Return “instruction” address

• Parameters

• Space for other local variables

•Stack frames contiguous
blocks of memory; stack pointer
tells where top stack frame is

•When procedure ends, stack
frame is tossed off the stack;
frees memory for future stack
frames frame

frame

frame

frameSP

CS61CL L02 Dynamic Storage (12) Huddleston, Summer 2009 © UCB

Stack

•Last In, First Out (LIFO) data structure

main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack

grows

down

CS61CL L02 Dynamic Storage (13) Huddleston, Summer 2009 © UCB

•Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !

int *ptr () {
int y;
y = 3;
return &y;

};
main () {
int *stackAddr,content;
stackAddr = ptr();
content = *stackAddr;
printf("%d", content); /* 3 */
content = *stackAddr;
printf("%d", content); /*13451514 */

};

Who cares about stack management?

main

ptr()
(y==3)

SP

main
SP

main

printf()
(y==?)

SP

CS61CL L02 Dynamic Storage (14) Huddleston, Summer 2009 © UCB

The Heap (Dynamic memory)

•Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could result blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory
explicitly to allocate item

 int *ptr;
ptr = (int *) malloc(sizeof(int));
/* malloc returns type (void *),
so need to cast to right type */

•malloc(): Allocates raw, uninitialized
memory from heap

CS61CL L02 Dynamic Storage (15) Huddleston, Summer 2009 © UCB

Memory Management

•How do we manage memory?

•Code, Static storage are easy:
they never grow or shrink

•Stack space is also easy:
stack frames are created and
destroyed in last-in, first-out (LIFO)
order

•Managing the heap is tricky:
memory can be allocated / deallocated
at any time

CS61CL L02 Dynamic Storage (16) Huddleston, Summer 2009 © UCB

Heap Management Requirements

•Want malloc() and free() to run
quickly.

•Want minimal memory overhead

•Want to avoid fragmentation* –
when most of our free memory is in
many small chunks

• In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

* This is technically called external fragmention

CS61CL L02 Dynamic Storage (17) Huddleston, Summer 2009 © UCB

Heap Management

•An example

• Request R1 for 100
bytes

• Request R2 for 1 byte

• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R1 (100 bytes)

CS61CL L02 Dynamic Storage (18) Huddleston, Summer 2009 © UCB

Heap Management

•An example

• Request R1 for 100
bytes

• Request R2 for 1 byte

• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R3?

R3?

CS61CL L02 Dynamic Storage (19) Huddleston, Summer 2009 © UCB

K&R Malloc/Free Implementation

•From Section 8.7 of K&R

• Code in the book uses some C language
features we haven!t discussed and is
written in a very terse style, don!t worry if
you can!t decipher the code

•Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

•All free blocks are kept in a circular
linked list, the pointer field is unused
in an allocated block

CS61CL L02 Dynamic Storage (20) Huddleston, Summer 2009 © UCB

K&R Implementation

•malloc() searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system. If what it gets
can!t satisfy the request, it fails.

•free() checks if the blocks adjacent to
the freed block are also free

• If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to
the free list

CS61CL L02 Dynamic Storage (21) Huddleston, Summer 2009 © UCB

Choosing a block in malloc()

• If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

• best-fit: choose the smallest block that is
big enough for the request

• first-fit: choose the first block we see that
is big enough

• next-fit: like first-fit but remember where
we finished searching and resume
searching from there

CS61CL L02 Dynamic Storage (22) Huddleston, Summer 2009 © UCB

Slab Allocator

•A different approach to memory
management (used in GNU libc)

•Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).

•For small blocks, allocate blocks in
sizes that are powers of 2

• e.g., if program wants to allocate 20
bytes, actually give it 32 bytes

CS61CL L02 Dynamic Storage (23) Huddleston, Summer 2009 © UCB

Slab Allocator

•Bookkeeping for small blocks is
relatively easy: just use a bitmap for
each range of blocks of the same size

•Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.

•Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

CS61CL L02 Dynamic Storage (24) Huddleston, Summer 2009 © UCB

Slab Allocator

16 byte blocks:

32 byte blocks:

64 byte blocks:

16 byte block bitmap: 11011000

32 byte block bitmap: 0111

64 byte block bitmap: 00

CS61CL L02 Dynamic Storage (25) Huddleston, Summer 2009 © UCB

Slab Allocator Tradeoffs

•Extremely fast for small blocks.

•Slower for large blocks

• But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

•Minimal space overhead

•No fragmentation (as we defined it
before) for small blocks, but still have
wasted space!

CS61CL L02 Dynamic Storage (26) Huddleston, Summer 2009 © UCB

Internal vs. External Fragmentation

•With the slab allocator, difference
between requested size and next
power of 2 is wasted

• e.g., if program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

•We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.

•External fragmentation: wasted space
between allocated blocks.

CS61CL L02 Dynamic Storage (27) Huddleston, Summer 2009 © UCB

Buddy System

•Yet another memory management
technique (used in Linux kernel)

•Like GNU!s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

•Keep separate free lists for each size

• e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

CS61CL L02 Dynamic Storage (28) Huddleston, Summer 2009 © UCB

Buddy System

• If no free block of size n is available, find
a block of size 2n and split it in to two
blocks of size n

•When a block of size n is freed, if its
neighbor of size n is also free, combine
the blocks in to a single block of size 2n

• Buddy is block in other half larger block

•Same speed advantages as slab allocator

buddies NOT buddies

CS61CL L02 Dynamic Storage (29) Huddleston, Summer 2009 © UCB

Allocation Schemes

•So which memory management
scheme (K&R, slab, buddy) is
best?

•There is no single best approach for
every application.

•Different applications have different
allocation / deallocation patterns.

•A scheme that works well for one
application may work poorly for
another application.

CS61CL L02 Dynamic Storage (30) Huddleston, Summer 2009 © UCB

Automatic Memory Management

•Dynamically allocated memory is
difficult to track – why not track it
automatically?

• If we can keep track of what memory
is in use, we can reclaim everything
else.

• Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

•So how do we track what is in use?

CS61CL L02 Dynamic Storage (31) Huddleston, Summer 2009 © UCB

Tracking Memory Usage

•Techniques depend heavily on the
programming language and rely on
help from the compiler.

•Start with all pointers in global
variables and local variables (root set).

•Recursively examine dynamically
allocated objects we see a pointer to.

• We can do this in constant space by
reversing the pointers on the way down

•How do we recursively find pointers in
dynamically allocated memory?

CS61CL L02 Dynamic Storage (32) Huddleston, Summer 2009 © UCB

Tracking Memory Usage

• Again, it depends heavily on the
programming language and compiler.

• Could have only a single type of dynamically
allocated object in memory

• E.g., simple Lisp/Scheme system with only cons
cells (61A!s Scheme not “simple”)

• Could use a strongly typed language (e.g.,
Java)

• Don!t allow conversion (casting) between
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage

CS61CL L02 Dynamic Storage (33) Huddleston, Summer 2009 © UCB

Scheme 1: Reference Counting

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

•When the count reaches 0, reclaim.

•Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

CS61CL L02 Dynamic Storage (34) Huddleston, Summer 2009 © UCB

Reference Counting Example

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.

int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1

p2

1020Reference

count = 1

Reference

count = 1

CS61CL L02 Dynamic Storage (35) Huddleston, Summer 2009 © UCB

Reference Counting Example

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.

int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1

p2

1020Reference

count = 2

Reference

count = 0

CS61CL L02 Dynamic Storage (36) Huddleston, Summer 2009 © UCB

Reference Counting (p1, p2 are pointers)

p1 = p2;

• Increment reference count for p2

• If p1 held a valid value, decrement its
reference count

• If the reference count for p1 is now 0,
reclaim the storage it points to.

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…

•Must also decrement reference count
when local variables cease to exist.

CS61CL L02 Dynamic Storage (37) Huddleston, Summer 2009 © UCB

Reference Counting Flaws

•Extra overhead added to assignments,
as well as ending a block of code.

•Does not work for circular structures!

• E.g., doubly linked list:

X Y Z

CS61CL L02 Dynamic Storage (38) Huddleston, Summer 2009 © UCB

Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until memory is
exhausted, then try to find unused memory.

• Consider objects in heap a graph, chunks of
memory (objects) are graph nodes, pointers to
memory are graph edges.

• Edge from A to B ! A stores pointer to B

• Can start with the root set, perform a graph
traversal, find all usable memory!

• 2 Phases:

1. Mark used nodes

2. Sweep free ones, returning list of free nodes

CS61CL L02 Dynamic Storage (39) Huddleston, Summer 2009 © UCB

Mark and Sweep

• Graph traversal is relatively easy to implement
recursively

 void traverse(struct graph_node *node) {
 /* visit this node */
 foreach child in node->children {
 traverse(child);
 }
}

• But with recursion, state is stored on the execution
stack.

• Garbage collection is invoked when not much memory
left

• As before, we could traverse in constant space (by
reversing pointers)

CS61CL L02 Dynamic Storage (40) Huddleston, Summer 2009 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

•The slides will appear in the order they
would have in the normal presentation

CS61CL L02 Dynamic Storage (41) Huddleston, Summer 2009 © UCB

Binky Pointer Video (thanks to NP @ SU)

Check out this video on the class website (click the link for this lecture)

CS61CL L02 Dynamic Storage (42) Huddleston, Summer 2009 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

1. Kid meets giant Texas people exercising zen-like yoga. – Rolf O

2. Kind men give ten percent extra, zestfully, youthfully. – Hava E

3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. –

Gary M

4. Kindness means giving, teaching, permeating excess zeal yourself. – Hava

E

5. Killing messengers gives terrible people exactly zero, yo

6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7. Kissing mediocre girls/guys teaches people (to) expect zero (from) you

8. Kinky Mean Girls Teach Penis-Extending Zen Yoga

9. Kissing Mel Gibson, Teddy Pendergrass exclaimed: “Zesty, yo!” – Dan G

10. Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

CS61CL L02 Dynamic Storage (43) Huddleston, Summer 2009 © UCB

C structures : Overview

•A struct is a data structure
composed from simpler data types.

• Like a class in Java/C++ but without
methods or inheritance.

struct point { /* type definition */
 int x;
 int y;
};

void PrintPoint(struct point p)
{
 printf(“(%d,%d)”, p.x, p.y);
}

struct point p1 = {0,10}; /* x=0, y=10 */

PrintPoint(p1);

As always in C, the argument is passed by “value” – a copy is made.

CS61CL L02 Dynamic Storage (44) Huddleston, Summer 2009 © UCB

C structures: Pointers to them

•Usually, more efficient to pass a
pointer to the struct.

•The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.

•The following are equivalent:

struct point *p;
 /* code to assign to pointer */
printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS61CL L02 Dynamic Storage (45) Huddleston, Summer 2009 © UCB

How big are structs?

•Recall C operator sizeof() which
gives size in bytes (of type or variable)

•How big is sizeof(p)?

 struct p {
char x;
int y;

};

• 5 bytes? 8 bytes?

• Compiler may word align integer y

CS61CL L02 Dynamic Storage (46) Huddleston, Summer 2009 © UCB

Linked List Example

•Let!s look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.

/* node structure for linked list */

struct Node {
 char *value;
 struct Node *next;
};

Recursive

definition!

CS61CL L02 Dynamic Storage (47) Huddleston, Summer 2009 © UCB

typedef simplifies the code

struct Node {
 char *value;
 struct Node *next;
};

/* "typedef" means define a new type */
typedef struct Node NodeStruct;

 … OR …
typedef struct Node {
 char *value;
 struct Node *next;
} NodeStruct;

… THEN

 typedef NodeStruct *List;
 typedef char *String;

/* Note similarity! */
/* To define 2 nodes */

struct Node {
 char *value;
 struct Node *next;
} node1, node2;

String value;

CS61CL L02 Dynamic Storage (48) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

{
 String s1 = "abc", s2 = "cde";
 List theList = NULL;
 theList = cons(s2, theList);
 theList = cons(s1, theList);
/* or, just like (cons s1 (cons s2 nil)) */
 theList = cons(s1, cons(s2, NULL));

CS61CL L02 Dynamic Storage (49) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …

NULL
?

s:

CS61CL L02 Dynamic Storage (50) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …

NULL?

?
s:

CS61CL L02 Dynamic Storage (51) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …

NULL

?

"????"

s:

CS61CL L02 Dynamic Storage (52) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …

NULL

?

"abc"

s:

CS61CL L02 Dynamic Storage (53) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

s:

"abc"

… …

NULL

"abc"

CS61CL L02 Dynamic Storage (54) Huddleston, Summer 2009 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */

List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
… …

NULL

"abc"

s:

"abc"

CS61CL L02 Dynamic Storage (55) Huddleston, Summer 2009 © UCB

C Memory Management

•C has 3 primary pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address
(location of “activation records” in Java or
“stack frame” in C)

• The Heap (dynamic malloc storage): data
lives until deallocated by programmer

•C requires knowing where objects are in
memory, otherwise things don!t work as
expected

• Java hides location of objects
CS61CL L02 Dynamic Storage (56) Huddleston, Summer 2009 © UCB

Intel 80x86 C Memory Management

•A C program!s 80x86
address space :

• heap: space requested for
pointers via malloc();
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

• stack: local variables,
grows downward

code

static data

heap

stack
~ 08000000hex

CS61CL L02 Dynamic Storage (57) Huddleston, Summer 2009 © UCB

Tradeoffs of allocation policies

•Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc).
Leaves lots of small blocks (why?)

•First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

•Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

CS61CL L02 Dynamic Storage (58) Huddleston, Summer 2009 © UCB

Scheme 3: Copying Garbage Collection

•Divide memory into two spaces, only
one in use at any time.

•When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

• Only reachable objects are copied!

•Use “forwarding pointers” to keep
consistency

• Simple solution to avoiding having to
have a table of old and new addresses,
and to mark objects already copied (see
bonus slides)

CS61CL L02 Dynamic Storage (59) Huddleston, Summer 2009 © UCB

Forwarding Pointers: 1st copy “abc”

From To

abc def

xyz

abc

?

CS61CL L02 Dynamic Storage (60) Huddleston, Summer 2009 © UCB

Forwarding Pointers: leave ptr to new abc

From To

abc def

xyz

abc

?

CS61CL L02 Dynamic Storage (61) Huddleston, Summer 2009 © UCB

Forwarding Pointers : now copy “xyz”

From To

def

xyz

abc

?

Forwarding pointer

CS61CL L02 Dynamic Storage (62) Huddleston, Summer 2009 © UCB

Forwarding Pointers: leave ptr to new xyz

From To

def abc

xyzxyz

Forwarding pointer

CS61CL L02 Dynamic Storage (63) Huddleston, Summer 2009 © UCB

Forwarding Pointers: now copy “def”

From To

def abc

xyz

Forwarding pointer

Forwarding pointer

Since xyz was already copied,

def uses xyz!s forwarding pointer

to find its new location

CS61CL L02 Dynamic Storage (64) Huddleston, Summer 2009 © UCB

Forwarding Pointers

From To

def abc

xyz

def

Forwarding pointer

Forwarding pointer

Since xyz was already copied,

def uses xyz!s forwarding pointer

to find its new location

