
CS61CL L01 Introduction (1) Huddleston, Summer 2009 © UCB

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c
CS61CL : Machine Structures

Lecture #2 - C Pointers and Arrays

2009-06-24

CS61CL L01 Introduction (2) Huddleston, Summer 2009 © UCB

Administrivia
• Buggy Start

• Lab schedule, lab machines, …

• HW0 due tomorrow in lab
• HW1 due Monday by 9:30am

• Assignment online, submission details to come

• Note Taking Service
• Slide Handouts
• Room Change (hopefully)
• Final Exam: 8/13 9:30-12:30 (3hrs)

CS61CL L01 Introduction (3) Huddleston, Summer 2009 © UCB

Introduction to C

CS61CL L01 Introduction (4) Huddleston, Summer 2009 © UCB

Has there been an update to ANSI C?
• Yes! It’s called the “C99” standard

• You need “gcc -std=c99” to compile

• References
http://en.wikipedia.org/wiki/C99

http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

• Highlights
• Declarations anywhere, like Java (#15)
• Java-like // comments (to end of line) (#10)
• Variable-length non-global arrays (#33)
•<inttypes.h>: explicit integer types (#38)
•<stdbool.h> for boolean logic def’s (#35)
•restrict and inline keywords for optimization (#30-32)

CS61CL L01 Introduction (5) Huddleston, Summer 2009 © UCB

Compilation : Overview

•C compilers turn C code into
architecture specific assembly code.
An assembler turns this into machine
code (string of 1s and 0s).

• GCC does both
• Unlike Java which converts to architecture

independent bytecode.
• Unlike most Scheme, Python, Ruby

environments which interpret the code.
• These differ mainly in when your program is

converted to machine instructions.

CS61CL L01 Introduction (6) Huddleston, Summer 2009 © UCB

C Syntax: main

•To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

•What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument). Here argc is 2:
$ sort myFile

•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS61CL L01 Introduction (7) Huddleston, Summer 2009 © UCB

C Syntax: Variable Declarations
• Very similar to Java, but with an important

differences
• A variable may be initialized in its

declaration; if not, it holds garbage!
• Examples of declarations:

• correct: int a = 0, b = 10;

...

• Incorrect: int i;
while(i < 10) {

...
i++;

CS61CL L01 Introduction (8) Huddleston, Summer 2009 © UCB

Address vs. Value

•Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value.

•Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS61CL L01 Introduction (9) Huddleston, Summer 2009 © UCB

Pointers

•An address refers to a particular
memory location. In other words, it
points to a memory location.
•Pointer: A variable that contains the
address of a variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS61CL L01 Introduction (10) Huddleston, Summer 2009 © UCB

Pointers
•How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p =&x;
p x 3

•How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

CS61CL L01 Introduction (11) Huddleston, Summer 2009 © UCB

Pointers
•How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS61CL L01 Introduction (12) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing (1/4)
•C passes parameters “by value”

• procedure/function/method gets a copy of the parameter,
so changing the copy cannot change the original

•What gets printed?

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

CS61CL L01 Introduction (13) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing (2/4)

•Solved by passing in a pointer to our
subroutine.
•Now what gets printed?

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

CS61CL L01 Introduction (14) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing (3/4)

•But what if what you want changed is
a pointer?
•What gets printed?

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS61CL L01 Introduction (15) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing (4/4)

•Solution! Pass a pointer to a pointer,
declared as **h
•Now what gets printed?

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS61CL L01 Introduction (16) Huddleston, Summer 2009 © UCB

Pointers

•Pointers are used to point to any data
type (int, char, a struct, etc.).
•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS61CL L01 Introduction (17) Huddleston, Summer 2009 © UCB

C Pointer Dangers

•Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!
•Local variables in C are not initialized,
they may contain anything.
•What does the following code do?

void f()
{
 int *ptr;
 *ptr = 5;
}

CS61CL L01 Introduction (18) Huddleston, Summer 2009 © UCB

Arrays (1/5)

•Declaration:
int ar[2];

declares a 2-element integer array. An
array is really just a chunk of memory.
 int ar[] = {795, 635};
declares and fills a 2-elt integer array.
•Accessing elements:

ar[num]

returns the numth element.

CS61CL L01 Introduction (19) Huddleston, Summer 2009 © UCB

Arrays (2/5)

•Arrays are (almost) identical to
pointers
•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

•Key Concept: An array variable is a
“pointer” to the first element.

CS61CL L01 Introduction (20) Huddleston, Summer 2009 © UCB

Arrays (3/5)
•Consequences:

•ar is an array variable but looks like a
pointer in many respects (though not all)
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

•Declared arrays are only allocated
while the scope is valid

char *foo() {
 char string[32]; ...;
 return string;
} is incorrect

CS61CL L01 Introduction (21) Huddleston, Summer 2009 © UCB

Arrays (4/5)

•Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

•Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS61CL L01 Introduction (22) Huddleston, Summer 2009 © UCB

Arrays (5/5)

•Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

•Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful! (You’ll learn how to debug
these in lab…)

CS61CL L01 Introduction (23) Huddleston, Summer 2009 © UCB

Pointer Arithmetic (1/2)

•Since a pointer is just a mem address, we
can add to it to traverse an array.
•p+1 returns a ptr to the next array elt.
•*p++ vs (*p)++ ?

• x = *p++ ⇒ x = *p ; p = p + 1;
• x = (*p)++ ⇒ x = *p ; *p = *p + 1;

•What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.

CS61CL L01 Introduction (24) Huddleston, Summer 2009 © UCB

int get(int array[], int n)
{
 return (array[n]);

// OR...
 return *(array + n);
}

Pointer Arithmetic (2/2)

•C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• 1 byte for a char, 4 bytes for an int, etc.

•So the following are equivalent:

CS61CL L01 Introduction (25) Huddleston, Summer 2009 © UCB

Pointers in C
•Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

•So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS61CL L01 Introduction (26) Huddleston, Summer 2009 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61CL L01 Introduction (27) Huddleston, Summer 2009 © UCB

“And in Conclusion…”
• A pointer is a C version of the address.

* “follows” a pointer to its value
& gets the address of a variable

• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little

protection
• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is more
overhead for the programmer.

• “C gives you a lot of extra rope but be careful
not to hang yourself with it!”

CS61CL L01 Introduction (28) Huddleston, Summer 2009 © UCB

Reference slides

You ARE responsible for the
material on these slides (they’re

just taken from the reading
anyway) ; we’ve moved them to

the end and off-stage to give
more breathing room to lecture!

CS61CL L01 Introduction (29) Huddleston, Summer 2009 © UCB

Corrections

• The average course GPA was listed in one
place as 2.9 and the other as B- (2.7). The
correct average is B- (2.7)
• The midterm will be a 1 hour exam which you

have 1.5 hours to take.

Errors from last lecture

CS61CL L01 Introduction (30) Huddleston, Summer 2009 © UCB

Administrivia
•Finish reading K&R by the next lecture
•There is a language called D!

• www.digitalmars.com/d/

•Homework expectations
• Readers don’t have time to fix your
programs which have to run on lab
machines.

• Code that doesn’t compile or fails all of
the autograder tests ⇒ 0

CS61CL L01 Introduction (31) Huddleston, Summer 2009 © UCB

Administrivia
• Slip days

• You get 3 “slip days” to use for any homework
assignment or project

• They are used at 1-day increments. Thus 1
minute late = 1 slip day used.

• They’re recorded automatically (by checking
submission time) so you don’t need to tell us
when you’re using them

• Once you’ve used all of your slip days, when a
project/hw is late, it’s … 0 points.

• If you submit twice, we ALWAYS grade the
latter, and deduct slip days appropriately

• You no longer need to tell anyone how your dog
ate your computer.

• You should really save for a rainy day … we all
get sick and/or have family emergencies!

CS61CL L01 Introduction (32) Huddleston, Summer 2009 © UCB

Pointers & Allocation (1/2)

•After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet (it actually points somewhere - but
don’t know where!). We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (next time)

CS61CL L01 Introduction (33) Huddleston, Summer 2009 © UCB

Pointers & Allocation (2/2)

•Pointing to something that already
exists:
int *ptr, var1, var2;
var1 = 5;
ptr = &var1;
var2 = *ptr;

•var1 and var2 have room implicitly
allocated for them.

ptr var1 ? var2 ?5 5?

CS61CL L01 Introduction (34) Huddleston, Summer 2009 © UCB

Arrays (one elt past array must be valid)

•Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;

• Is this legal?

•C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS61CL L01 Introduction (35) Huddleston, Summer 2009 © UCB

Pointer Arithmetic
•So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

•Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS61CL L01 Introduction (36) Huddleston, Summer 2009 © UCB

Pointer Arithmetic to Copy memory

•We can use pointer arithmetic to
“walk” through memory:
void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}
•Note we had to pass size (n) to copy

CS61CL L01 Introduction (37) Huddleston, Summer 2009 © UCB

Arrays vs. Pointers

•An array name is a read-only pointer
to the 0th element of the array.
•An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written:
while (s[n])

CS61CL L01 Introduction (38) Huddleston, Summer 2009 © UCB

Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;
• x = *p+1 ?

⇒ x = (*p) + 1 ;
• x = (*p)++ ?

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?

⇒ x = *p ; p = p + 1;
• x = *++p ?

⇒ p = p + 1 ; x = *p ;

• Lesson?
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!

CS61CL L01 Introduction (39) Huddleston, Summer 2009 © UCB

Segmentation Fault vs Bus Error?
• http://www.hyperdictionary.com/
• Bus Error

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process.

• Segmentation Fault
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.

CS61CL L01 Introduction (40) Huddleston, Summer 2009 © UCB

More C Pointer Dangers
•Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

•The first pointer declaration is invalid
since the types do not match.
•The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS61CL L01 Introduction (41) Huddleston, Summer 2009 © UCB

C Strings Headaches
•One common mistake is to forget to
allocate an extra byte for the null
terminator.
•More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

• What if you don’t know ahead of time
how big your string will be?

• Buffer overrun security holes!

CS61CL L01 Introduction (42) Huddleston, Summer 2009 © UCB

Common C Error

•There is a difference between
assignment and equality
a = b is assignment
a == b is an equality test

•This is one of the most common
errors for beginning C programmers!

• One solution (when comparing with
constant) is to put the var on the right!
If you happen to use =, it won’t compile.
if (3 == a) { ...

CS61CL L01 Introduction (43) Huddleston, Summer 2009 © UCB

C String Standard Functions

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.

