
CS61CL L01 Introduction (1) Huddleston, Summer 2009 © UCB

Jeremy Huddleston

inst.eecs.berkeley.edu/~cs61c
CS61CL : Machine Structures

Lecture #1 – Introduction, C

2009-06-21

CS61CL L01 Introduction (2) Huddleston, Summer 2009 © UCB

Where does CS61C fit in?

http://hkn.eecs.berkeley.edu/student/cs-prereq-chart1.gif

CS61CL L01 Introduction (3) Huddleston, Summer 2009 © UCB

Are Computers Smart?

•To a programmer:
• Very complex operations / functions:

- (map (lambda (x) (* x x)) '(1 2 3 4))

• Automatic memory management:
- List l = new List;

• “Basic” structures:
- Integers, floats, characters, plus, minus,

print commands
Computers
are smart!

CS61CL L01 Introduction (4) Huddleston, Summer 2009 © UCB

Are Computers Smart?

• In real life at the lowest level:
• Only a handful of operations:

- {and, or, not}
• No automatic memory management.
• Only 2 values:

- {0, 1} or {low, high} or {off, on}

Computers
are dumb!

CS61CL L01 Introduction (5) Huddleston, Summer 2009 © UCB

61C

What are “Machine Structures”?

Coordination of many
levels (layers) of abstraction

I/O systemProcessor

Compiler
Operating

System
(Mac OSX)

Application (ex: browser)

Digital Design
Circuit Design

Instruction Set
 Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

CS61CL L01 Introduction (6) Huddleston, Summer 2009 © UCB

61C Levels of Representation

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

CS61CL L01 Introduction (7) Huddleston, Summer 2009 © UCB

Anatomy: 5 components of any Computer

 Processor

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data
live when
not running)

CS61CL L01 Introduction (8) Huddleston, Summer 2009 © UCB

Overview of Physical Implementations

• Integrated Circuits (ICs)
• Combinational logic circuits, memory elements,

analog interfaces.
• Printed Circuits (PC) boards

• substrate for ICs and interconnection, distribution of
CLK, Vdd, and GND signals, heat dissipation.

• Power Supplies
• Converts line AC voltage to regulated DC low voltage

levels.
• Chassis (rack, card case, ...)

• holds boards, power supply, provides physical
interface to user or other systems.

• Connectors and Cables.

The hardware out of which we make systems.

CS61CL L01 Introduction (9) Huddleston, Summer 2009 © UCB

Integrated Circuits (2009 state-of-the-art)
• Primarily Crystalline Silicon
• 1mm - 25mm on a side
• 2009 feature size ~ 45 nm = 45 x 10-9 m

(red light has a wavelength of ~700nm)
• 500 - 2000M transistors
• 2 - 864 cores
• 3 - 10 conductive layers
• “CMOS” (complementary metal oxide

semiconductor) - most common.

• Package provides:
• spreading of chip-level signal paths to

board-level
• heat dissipation.

• Ceramic or plastic with gold wires.

Chip in Package

Bare Die

CS61CL L01 Introduction (10) Huddleston, Summer 2009 © UCB

Printed Circuit Boards

• fiberglass or ceramic
• 1-20 conductive

layers
• 1-20 in on a side
• IC packages are

soldered down.
• Provides:

• Mechanical support
• Distribution of power

and heat.

CS61CL L01 Introduction (11) Huddleston, Summer 2009 © UCB

Technology Trends:
Microprocessor Complexity

2X Transistors / Chip
Every 1.5 - 2 years

Called
 “Mooreʼs Law”

Gordon Moore
Intel Cofounder
B.S. Cal 1950!

CS61CL L01 Introduction (12) Huddleston, Summer 2009 © UCB

Technology Trends: Memory Capacity

year size (Mbi)
1986 1
1988 4
1991 16
1995 64
1997 128
1999 256
2001 512
2003 1024 (1 Gbi)
2005 2048 (2 Gbi)
2007 4096 (4 Gbi)
2009 8192 (8 Gbi)

• Now 1.4X/yr, or 2X every 2 years.
• Over 10,000 X since 1980!

size

Yea r

B
i
t
s

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

Bi
ts

Year

1950: Alan Turing predicted ~1G by 2000

CS61CL L01 Introduction (13) Huddleston, Summer 2009 © UCB

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
ce

 (
vs

.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

20%/year

Technology Trends:
Uniprocessor Performance (SPECint)

• VAX : 1.25x/year 1978 to 1986
• RISC + x86: 1.52x/year 1986 to 2002
• RISC + x86: 1.20x/year 2002 to present

1.25x/year

1.52x/year

1.20x/year

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

CS61CL L01 Introduction (14) Huddleston, Summer 2009 © UCB

Computer Technology - Dramatic Change!
•Memory

• DRAM capacity: 2x / 2 years (since ʻ96);
64x size improvement in last decade.

•Processor
• Speed 2x / 1.5 years (since ʻ85); [slowing!]
100X performance in last decade.

•Disk
• Capacity: 1.8x / 1 year (since ʻ97)
250X size in last decade.

CS61CL L01 Introduction (15) Huddleston, Summer 2009 © UCB

SI Prefixes
Le Système International d'Unités

CS61CL L01 Introduction (16) Huddleston, Summer 2009 © UCB

Computer Technology - Dramatic Change!

•State-of-the-art PC when you graduate:
(at least…)

• Processor clock speed: 16 x 4000 MegaHz
(16 x 4.0 GigaHz)

• Memory capacity: 327680 MebiBytes
(320 GibiBytes)

• Disk capacity: 6000 GigaBytes
(6 TeraBytes)

• Mega ⇒ Giga ⇒ Tera ⇒ Peta ⇒ Exa ⇒ …

CS61CL L01 Introduction (17) Huddleston, Summer 2009 © UCB

CS61CL: So, whatʼs in it for me?
• Learn some of the big ideas in CS & Engineering:

• Principle of abstraction
- Used to build systems as layers

• 5 Classic components of a Computer
• Data can be anything

- Integers, floating point, characters, …
- A program determines what it is
- Stored program concept: instructions just data

• Principle of Locality
- Exploited via a memory hierarchy (cache)

• Greater performance by exploiting parallelism
• Compilation v. interpretation through system layers
• Principles / Pitfalls of Performance Measurement

CS61CL L01 Introduction (18) Huddleston, Summer 2009 © UCB

Others Skills learned in 61C
•Learning C

• If you know one, you should be able to learn another
programming language largely on your own

• If you know C++ or Java, it should be easy to pick up
their ancestor, C

•Assembly Language Programming
• This is a skill you will pick up, as a side effect of

understanding the Big Ideas

•Hardware design
• Weʼll learn just the basics of hardware design
• CS 150, 152 teach this in more detail

CS61CL L01 Introduction (19) Huddleston, Summer 2009 © UCB

Yoda says…

“Always in
motion is the

future…”

Our schedule may change slightly depending on some factors.
This includes lectures, assignments & labs…

CS61CL L01 Introduction (20) Huddleston, Summer 2009 © UCB

What is this?

Attention over time!
t

CS61CL L01 Introduction (21) Huddleston, Summer 2009 © UCB

What is this?!

Attention over time!

~5
min

t

CS61CL L01 Introduction (22) Huddleston, Summer 2009 © UCB

Lab-based Model

•UC-WISE
•Lecture on M,W only!
•Labs every day

•Discussion replaced with a 2hr lab at the same time

CS61CL L01 Introduction (23) Huddleston, Summer 2009 © UCB

Peer Instruction and Just-in-time-learning
• Interact with other students in lab

•Fill out brainstorms in lab
• Graded for effort, not correctness…
• Review other studentsʼ responses

•Read textbook
• Reduces examples have to do in class
• Get more from lecture (also good advice)

CS61CL L01 Introduction (24) Huddleston, Summer 2009 © UCB

Weekly Schedule

•Weekly schedule is on the website
•Office Hours are happening this week
•This week

• Jeremyʼs Th OH Canceled
• Jeremy has OH Tu and W 11:30-1

CS61CL L01 Introduction (25) Huddleston, Summer 2009 © UCB

Your final grade
•Grading (could change before 1st midterm)

• 90 = 9% Labs (3 pts per 31-9)
• 140 = 14% Homework (20 points per 8-1)
• 320 = 32% Projects (80 points per 4)
• 150 = 15% Midterm [can be clobbered]
• 300 = 30% Final
• + Extra credit for EPA. Whatʼs EPA?

CS61CL L01 Introduction (26) Huddleston, Summer 2009 © UCB

Extra Credit: EPA!
• Effort

• Attending Danʼs and TAʼs office hours,
completing all assignments, turning in HW0

• Participation
• Attending lecture and voting using the PRS

system
• Asking great questions in discussion and

lecture and making it more interactive

• Altruism
• Helping others in lab or on the newsgroup

• EPA! extra credit points have the potential
to bump students up to the next grade
level! (but actual EPA! scores are internal)

CS61CL L01 Introduction (27) Huddleston, Summer 2009 © UCB

Your final grade
•Grade distributions

• Perfect score is 1 kilopoint.
• Course average GPA ~ 2.9
• 25% As, 60% Bs, 18% Cs, 2% D,F
• No F will be given if all-but-one {hw, lab},

all projects submitted and all exams taken
• Weʼll “ooch” grades up but never down

CS61CL L01 Introduction (28) Huddleston, Summer 2009 © UCB

Course Problems…Cheating
• What is cheating?

• Studying together in groups is encouraged.
• Turned-in work must be completely your own.
• Common examples: running out of time on a assignment and

then pick up output, person asks to borrow solution “just to
take a look”, copying an exam question, …

• Youʼre not allowed to work on homework/projects/exams with
anyone (other than ask Qs walking out of lecture)

• Both “giver” and “receiver” are equally culpable

• Caught Cheating points: 0 EPA, negative points for that
assignment / project / exam (e.g., if itʼs worth 10 pts, you get -
10) In most cases, F in the course.

• Amnesty: If you turn yourself in, 0 for that assignment.
• Every offense will be referred to the Office of Student Judicial

Affairs.

www.eecs.berkeley.edu/Policies/acad.dis.shtml

CS61CL L01 Introduction (29) Huddleston, Summer 2009 © UCB

My goal as an instructor
• To make your experience in CS61CL

as enjoyable & informative as possible
• Approachability, share my enthusiasm
• Fun, challenging projects & HW
• Pro-student policies (exam clobbering)

• To maintain Cal & EECS
standards of excellence

• Your projects & exams will be just as
rigorous as every year. Overall : B- avg

• To be an HKN “7.0” man
• Please give me feedback so I improve!

Why am I not 7.0 for you? I will listen!!
• Help me help you!

CS61CL L01 Introduction (30) Huddleston, Summer 2009 © UCB

Meet Your TAs

Josh
Hug

Paul
Pearce

James
Tu

CS61CL L01 Introduction (31) Huddleston, Summer 2009 © UCB

Introduction to C

CS61CL L01 Introduction (32) Huddleston, Summer 2009 © UCB

Has there been an update to ANSI C?
• Yes! Itʼs called the “C99” or “C9x” std

• You need “gcc -std=c99” to compile

• References
http://en.wikipedia.org/wiki/C99

http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

• Highlights
• Declarations anywhere, like Java (#15)
• Java-like // comments (to end of line) (#10)
• Variable-length non-global arrays (#33)
•<inttypes.h>: explicit integer types (#38)
•<stdbool.h> for boolean logic defʼs (#35)
•restrict and inline keywords for optimization (#30-32)

CS61CL L01 Introduction (33) Huddleston, Summer 2009 © UCB

Disclaimer

• Important: You will not learn how to
fully code in C in these lectures!
Youʼll still need your C reference for
this course.

• K&R is a must-have reference
- Check online for more sources

• “JAVA in a Nutshell,” OʼReilly.
- Chapter 2, “How Java Differs from C”

• Brian Harveyʼs course notes
- On class website

CS61CL L01 Introduction (34) Huddleston, Summer 2009 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent bytecode.

• Unlike most Scheme, Python, Ruby
environments which interpret the code.

• These differ mainly in when your
program is converted to machine
instructions.

• For C, generally a 2 part process of
compiling .c files to .o (object) files, then
linking the object files into executables

CS61CL L01 Introduction (35) Huddleston, Summer 2009 © UCB

Compilation : Advantages

•Great run-time performance: generally
much faster than interpreted
languages or Java for comparable
code (because it optimizes for a given
architecture)
•OK compilation time: enhancements
in compilation procedure (Makefiles)
allow only modified files to be
recompiled

CS61CL L01 Introduction (36) Huddleston, Summer 2009 © UCB

Compilation : Disadvantages

•All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.
•Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

•The “change→compile→run [repeat]”
iteration cycle is slow

CS61CL L01 Introduction (37) Huddleston, Summer 2009 © UCB

C Syntax: main
•To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

•What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument). Here argc is 2:
$ sort myFile

•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS61CL L01 Introduction (38) Huddleston, Summer 2009 © UCB

C Syntax: Variable Declarations
• Very similar to Java, but with a few minor

but important differences
• All variable declarations must go before they

are used (at the beginning of the block)*
• A variable may be initialized in its

declaration; if not, it holds garbage!
• Examples of declarations:

• correct: {
int a = 0, b = 10;

...
• Incorrect:* for (int i = 0; i < 10; i++)

*C99 overcomes these limitations

CS61CL L01 Introduction (39) Huddleston, Summer 2009 © UCB

Address vs. Value

•Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value.

•Donʼt confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS61CL L01 Introduction (40) Huddleston, Summer 2009 © UCB

Pointers

•An address refers to a particular
memory location. In other words, it
points to a memory location.
•Pointer: A variable that contains the
address of a variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS61CL L01 Introduction (41) Huddleston, Summer 2009 © UCB

Pointers
•How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p =&x;
p x 3

•How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

CS61CL L01 Introduction (42) Huddleston, Summer 2009 © UCB

Pointers
•How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS61CL L01 Introduction (43) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing
•Java and C pass parameters “by value”

• procedure/function/method gets a copy of the
parameter, so changing the copy cannot
change the original
 void addOne (int x) {

 x = x + 1;
}

 int y = 3;

 addOne(y);

y is still = 3

CS61CL L01 Introduction (44) Huddleston, Summer 2009 © UCB

Pointers and Parameter Passing
•How to get a function to change a value?
 void addOne (int *p) {

*p = *p + 1;
}

 int y = 3;

 addOne(&y);

y is now = 4

CS61CL L01 Introduction (45) Huddleston, Summer 2009 © UCB

Pointers

•Pointers are used to point to any data
type (int, char, a struct, etc.).
•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS61CL L01 Introduction (46) Huddleston, Summer 2009 © UCB

And in conclusion…

•All declarations go at the beginning of
each function except if you use C99.
•Only 0 (and NULL) evaluate to FALSE.
•All data is in memory. Each memory
location has an address used to refer
to it and a value stored in it.
•A pointer is a C version of the
address.
* “follows” a pointer to its value
& gets the address of a value

CS61CL L01 Introduction (47) Huddleston, Summer 2009 © UCB

Reference slides

You ARE responsible for the
material on these slides (theyʼre

just taken from the reading
anyway) ; weʼve moved them to

the end and off-stage to give
more breathing room to lecture!

CS61CL L01 Introduction (48) Huddleston, Summer 2009 © UCB

Course Lecture Outline

• Basics
• C-Language, Pointers
• Memory management

• Machine Representations
• Numbers (integers, reals)
• Assembly Programming
• Compilation, Assembly

• Processors & Hardware
• Logic Circuit Design
• CPU organization
• Pipelining

• Memory Organization
• Caches
• Virtual Memory

• I / O
• Interrupts
• Disks, Networks

• Advanced Topics
• Performance
• Virtualization
• Parallel Programming

CS61CL L01 Introduction (49) Huddleston, Summer 2009 © UCB

Homeworks, Labs and Projects
•Lab exercises (due in that lab session
unless extension given by TA)

•Homework exercises (~ every week;
(HW 0) out now, due in lab Wednesday)

•Projects (every 2 to 3 weeks)
•All exercises, reading, homeworks,
projects on course web page
•We will DROP your lowest HW, Lab!
•Only one {Project, Midterm} / week

CS61CL L01 Introduction (50) Huddleston, Summer 2009 © UCB

2 Course Exams
• Midterm: Monday 2009-07-20 In Lecture

- Give 1.5 hours for 2.5 hour exam
- Open everything that can be used during takeoff
- Review session Fri beforehand, time/place TBA

• Final: Th 2009-08-13 In “Lecture”
- You can clobber your midterm grade!
- (students always LOVE this…)

CS61CL L01 Introduction (51) Huddleston, Summer 2009 © UCB

Texts

• Required: Computer Organization and
Design: The Hardware/Software
Interface, Third or Fourth Edition,
Patterson and Hennessy (COD). The
second edition is far inferior, and is
not suggested.

• Required: The C Programming
Language, Kernighan and Ritchie
(K&R), 2nd edition

• Reading assignments on web page

CS61CL L01 Introduction (52) Huddleston, Summer 2009 © UCB

Administrivia : You have a question?
• Do not email Jeremy (& expect response)

• Hundreds of emails in inbox
• Email doesnʼt scale to classes with 100+ students!

• Tips on getting an answer to your question:
• Ask a classmate
• Ask Jeremy after or before lecture
• The newsgroup, ucb.class.cs61c

- Read it : Has your Q been answered already?
- If not, ask it and check back

• Ask TA in section, lab or OH
• Ask Jeremy in OH
• Ask Jeremy in lecture (if relevant to lecture)
• Send your TA email
• Send your Head TAs email
• Send Dan email

CS61CL L01 Introduction (53) Huddleston, Summer 2009 © UCB

Administrivia : Lab priority

Rank order of seating priority
1. 61c registered for that section
2. 61c registered for another section
3. 61c waitlisted for that section
4. 61c waitlisted for another section
5. Concurrent enrollment

If low on list for busy section, think
of moving to the early or late
sections (usually more empty seats)

CS61CL L01 Introduction (54) Huddleston, Summer 2009 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS61CL L01 Introduction (55) Huddleston, Summer 2009 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
 /* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax: *
/* comment */
// comment
printf

* You need newer C compilers to allow Java style
comments, or just use C99

CS61CL L01 Introduction (56) Huddleston, Summer 2009 © UCB

C Syntax: True or False?

•What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean*

•What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

*Boolean types provided by C99ʼs stdbool.h

CS61CL L01 Introduction (57) Huddleston, Summer 2009 © UCB

C syntax : flow control

• Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control
•if-else

•switch

•while and for
•do-while

