Where Do We Go From Here?

Administrivia

Computer Science 61C Spring 2017

- Next week:
 - Monday: Fun lecture on the "securing C" arms race
 - Wednesday & Friday: Review sessions
- 5/9: 3-6 PM, location still TBD
 - Those of you on DSP accommodations contact Stephen and Rebecca

Where Do We Go From Here?

Computer Science 61C Spring 2017

- A Review of the Class
- A Map of the Future

Friedland and Weaver

3

Current 61C: The Same Concepts Over a Mass Scale

All Have Hit the Single-Thread Brick Wall

Leaving Parallelism the **only** way to improve throughput

But Things Are Still Getting Cheaper & Better

Computer Science 61C Spring 2017

New-School Machine Structures

Six Great Ideas in Computer Architecture

Computer Science 61C Spring 2017

- Design for Moore's Law:
 - Multicore & Thread-Level Parallelism (Multicore, Parallelism, OpenMP, Project #4)
- Abstraction to Simplify Design
 - And when in doubt, add another layer of abstraction
- Make the Common Case Fast
 - The design philosophy behind RISC
- Dependability via Redundancy
 - ECC, RAID, and clusters of systems
- Memory Hierarchy
 - Caches, Caches, and More Caches...
- Performance via Parallelism/Pipelining/Prediction
 Berkeley <u>EECS</u>

The Five Kinds of Parallelism

Computer Science 61C Spring 2017

Friedland and Weaver

- Request Level Parallelism
 - Google & warehouse scale computers
- Instruction Level Parallelism
 - Pipelining & 152/252 topics: Superscalar, out-of-order execution, branch prediction
- (Fine Grain) Data Level Parallelism:
 - SIMD instructions, graphics cards
- (Course Grain) Data/Task Level Parallelism:
 - Map/Reduce: Hadoop and Spark
- Thread Level Parallelism:

Multicore systems, OpenMP (and also take a look at Go)
 Berkeley EECS

Nick's First Computer: 1980, Apple][+

Computer Science 61C Spring 2017

- MOS 6502 processor:
 - 8b processor with a 16b address bus
- 16kB of RAM
 - Extended it to 32kB with a memory card
- Floppy drive: 140kB disks
- ~\$4000 in today's money!
- Languages supported included BASIC and Logo
 - Logo is remarkably subtle and cool, its remarkably similar to scheme under the hood

Nick's Freshman Year Computer: 1991

Computer Science 61C Spring 2017

- 25MHz 68040, 32b processor
- 20 MB of memory
 - I expanded it from the original 8 MB
- 1120x832 2-bit grayscale display
 - But I'd rather have a sharp grayscale display than an ugly color display at the time
- ~100 MB hard drive, 2.88MB floppy drive
 - About \$9k in today's dollars

But That Was Sufficient For 60B...

Computer Science 61C Spring 2017

- The predecessor to current 61C
 - Added more learning of C
 - Didn't include parallel programming, data-center stuff, RAID, etc...
- But otherwise, the contents looked rather familiar

One of Nick's Research Computers...

Computer Science 61C Spring 2017

- Yeup, an RPi3
 - ~50x single-thread performance
 - ~200x multi-threaded performance
 - 50x the RAM
- Only difference from what you might have:
 - I stuck in a 128GB SDCARD

TechNewsDaily

www.technewsdaily.com

Your Computer is Going Away

Computer Science 61C Spring 2017

Soon, your smartphone, TiVo, laptop, television -- all of your current gadgets -- will be obsolete. The future is "ubiquitous computing." Think Google Docs, but on every screen you use, running every program you use -- every device drawing from the same pool of data and processing power. Here's how we got to this point.

Friedland and Weaver

°C

Berkeley EECS

Computer Science 61C Spr

17

But A Dissent From The Cloudy Future...

Computer Science 61C Spring 2017

- The "Cloud" is really just a name for someone else's computer...
- And you are therefore trusting them to do right by your data...
- It could be because you pay them
 - Amazon EC2
- It could be because you bought "ohh shiny"
 - Apple
- It could be because they are selling your soul using your data for their own profit
 - Google

Friedland and W

Nick's Happy Prediction: The Fabrication Revolution...

Computer Science 61C Spring 2017

- We've seen incredibly powerful and cheap compute modules with built-in networking
 - RPi 3: \$35
 - RPi-0: \$10
- Amdahl's Law applies to cost optimization...
 - If you have a \$15 RPi 0 + SD Card to drive your product...
 - The rest of the cost has to be pretty damn low before its worth replacing with something cheaper
- So the compute & communication to make a device is effectively free Berkeley EECS

But It's Not Just The Compute & Control...

Computer Science 61C Spring 2017

- 3D printers, laser cutters, C&C Machines all make prototyping stuff cheap
 - And direct paths to go from 1 to 10 to 1000 to 100,000 thingies
- And logistics
 - Time from manufacturer to me doesn't actually care where I am in the US
- And direct to consumer marketing Berkeley EECS

FECEX® KICKSTARTER

Nick's Gloomy Prediction: Automation and Its Discontents...

Computer Science 61C Spring 2017

Berkeley EECS

- We are getting damn close to the autonomous long-haul truck
 - If it costs \$100K to automate a semi-truck it will pay for itself in <2 years!
- And a lot of jobs with robots
 - EG, the \$20k Baxter human-safe robot: One robot only needs to replace .2 humans to pay for itself in 2 years
- Plus all the AI-related dislocation
- Scary Prediction:
 20 years from now we will have
 >20% unemployment

Design from Logan, © 2017 21st Century Fox