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RAID!!!
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Error Detection and Error 
Correction
• As a reminder:

• It takes a lot of bits but one can do error correcting codes

• EG, Hamming codes

• But a lot fewer bits to just detect errors


• Therefore you get a lot of noisy systems with CRC or 
cryptographic hash


• Result is either CORRECT or ERROR

• You can’t get INCORRECT

• This applies to network, disk, etc etc etc.
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Why Worry About Disk 
At All?
• Spinning disk is still a critical technology

• Although worse latency than SSD…


• Disk has equal or greater bandwidth and an order of 
magnitude better storage density (bits/cm3) and cost 
density (bits/$)


• So when you need to store a petabyte or three…

• You need to use disk, not SSDs


• Oh, and SSDs can fail too
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Evolution of the Disk Drive

4IBM RAMAC 305, 1956

IBM 3390K, 1986

Apple SCSI, 1986
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Can smaller disks be used  to close gap in 
performance between disks and CPUs?

Arrays of Small Disks
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14”
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Disk Array:     
1 disk design

Conventional:                 
4 disk  designs

Low End High End
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Replace Small Number of Large Disks with Large 
Number of Small Disks! (1988 Disks)
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Capacity 
Volume 
Power
Data Rate 
I/O Rate   
MTTF  
Cost

IBM 3390K
20 GBytes
97 cu. ft.
3 KW
15 MB/s
600 I/Os/s
250 KHrs
$250K

IBM 3.5" 0061
320 MBytes
0.1 cu. ft.
11 W
1.5 MB/s
55 I/Os/s
50 KHrs
$2K

x70
23 GBytes
11 cu. ft.
1 KW
120 MB/s
3900 IOs/s
??? Hrs
$150K

Disk Arrays have potential for large data and I/O rates, 
high MB per cu. ft., high MB per KW, but what about 
reliability?

9X
3X
8X
6X
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Clicker Question: MTTF

• You have a disk with MTTF of 10,000 hours...

• Failures are independent, random, and uniformly distributed


• What is the MTTF for a single disk in a set of 100 disks?

• a: 10,000 hours

• b: 1,000 hours

• c: 100 hours

• d: 10 hours

• e:  I hate clicker questions
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But MTTF goes through the roof…

• If 1 disk as MTTF of 50k hours…

• 70 disks will have a MTTF of ~700 hours!!!

• This is assuming failures are independent…


• But fortunately we know when failures occur!

• Disks use a lot of CRC coding, so we don’t have corrupted data, just no data


• We can have both “Soft” and “Hard” failures

• Soft failure just the read is incorrect/failed, the disk is still good

• Hard failures kill the disk, necessitating replacement

• Most RAID setups are “Hot swap”:  

Unplug the disk and put in a replacement while things are still going

• Most modern RAID arrays also have “hot spares”: 

An already installed disk that is used automatically if another disk fails.
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RAID: Redundant Arrays of (Inexpensive) Disks

• Files are "striped" across multiple disks

• Redundancy yields high data availability

• Availability: service still provided to user, even if some components failed


• Disks will still fail

• Contents reconstructed from data redundantly stored in the 

array

• Capacity penalty to store redundant info

• Bandwidth penalty to update redundant info on writes
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Raid 0: Striping

• "RAID 0" is not actually RAID

• Its simply spreading the data across multiple disks


• So, e.g, for 4 disks, address 0 is on disk 0, address 1 is on 
disk 1, address 2 is on disk 2, address 4 on disk 0...


• Improves bandwidth linearly

• With 4 disks you have 4x the disk bandwidth


• Doesn't really help latency

• Still have the individual disks seek and rotation time


• And well, failures happen...
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Redundant Arrays of Inexpensive Disks 
RAID 1: Disk Mirroring/Shadowing
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• Each disk is fully duplicated onto its “mirror”
      Very high availability can be achieved
• Writes limited by single-disk speed
• Reads may be optimized

Most expensive solution: 100% capacity overhead

recovery
group
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Redundant Array of Inexpensive Disks RAID 3: 
Parity Disk
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P
10010011
11001101
10010011
. . .

logical record 1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

P contains sum of
other disks per stripe  
mod 2 (“parity”)
If disk fails, subtract 
P from sum of other  
disks to find missing information

Striped physical
records
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Redundant Arrays of Inexpensive Disks RAID 4: 
High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.Disk Columns

Increasing
Logical
Disk
Address

Stripe

Insides of 
5 disks

Example: 
small read 
D0 & D5, 
large write 
D12-D15
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Inspiration for RAID 5

• RAID 4 works well for small reads

• Small writes (write to one disk): 

• Option 1: read other data disks, create new sum and write to Parity Disk

• Option 2: since P has old sum, compare old data to new data, add the difference to P


• Small writes are limited by Parity Disk: Write to D0, D5 both also 
write to P disk 
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D0 D1 D2 D3 P

D4 D5 D6 PD7



Computer Science 61C Spring 2017 Friedland and Weaver

RAID 5: High I/O Rate Interleaved Parity
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Independent 
writes
possible 
because of
interleaved 
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk 
Addresses

Example: write 
to D0, D5 uses 
disks 0, 1, 3, 4
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Problems of Disk Arrays: Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old 
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2  Physical Writes
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Tech Report Read ‘Round the World 
(December 1987)

17



Computer Science 61C Spring 2017 Friedland and Weaver

RAID-I

• RAID-I (1989) 

•Consisted of a Sun 4/280 workstation with 128 

MB of DRAM, four dual-string SCSI controllers, 
28 5.25-inch SCSI disks and specialized disk 
striping software
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RAID II

• 1990-1993

• Early Network Attached Storage (NAS) 

System running a Log Structured File 
System (LFS)


• Impact:

• $25 Billion/year in 2002

• Over $150 Billion in RAID device sold since 

1990-2002

• 200+ RAID companies (at the peak)

• Software RAID a standard component of modern OSs
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Oh, and disk failures are often correlated...

• You don't just have one disk die...

• You can have more die in a short period of time

• Thank both the "bathtub curve" and common environmental conditions


• If you care about your data, RAID isn't sufficient!!!

• You need to also consider a separate backup solution
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So Lets Put it In Action…

• Say I’m working for some spy agency…

• The targeting problem:  I need the 

capability to target anybody

• For whatever use of “target”: advertising, profiling, 

surveilling, drone-striking…


• The retrospective corollary: I won’t know 
until tomorrow what I wish I knew today


• So collect it all, on everybody, always 
proves the optimal solution if you can 
afford it…

21



Computer Science 61C Spring 2017 Friedland and Weaver

Consider a Spherical Cow…

Is Collect It All affordable?
• An extreme case: I want to track everybody! so 10B people

• Interesting records:

• 8B -> Unique ID #

• Name & Address -> 100B

• Location Record -> 64B

• Decent ID photo -> 50kB

• Website Pageview -> 200B

• Purchase Record -> 200B

• etc etc etc…
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And Types of Computations: 
Mostly-Write Only Datasets
• Query Focused Datasets (QFDs) in NSA-parlance

• Requires the ability to specify a limited query that can be hash-computed


• Write data into hash buckets

• Store buckets in memory and only flush to disk when they reach the target block size 

(probably 64 MB), without bothering to sort in the bucket


• Read data by searching the appropriate buckets

• Read entire blocks and search through for desired record


• Optimizes for spinning disk and mostly write-only:

• Writes are batched up and done in bulk

• Writes are unsorted to save time

• Search in read is not a problem: Disk latency dominates anyway
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Streaming Computation…

• This is more the classic “map/reduce” flow we all know and 
love


• For every element in the dataset do X


• Mostly makes sense on data ingress

• Split data into light (“metadata”) and heavy flows on the data itself

• With different retention times for different types of data


• The problem: it will always be (relatively) slow unless you 
can restrict operation to a smaller dataset
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Building Block #1: 
Storage Pods
• EG Storinator S45 Turbo storage pod…

• Dual core computer w 32 GB RAM

• Multiple 10 Gbps Ethernet interfaces

• 45 8 TB hot-swap disks

• Say ~300TB usable storage after RAIDing

• Say ~100TB usable after HDFS triple-redundancy


• Result is a “storage budget” of 10kB per person

• For ~$40k in cash and 4u of space
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Building Block #2: 
1u Servers
• Commodity 1u, 10 disk compute-node 

servers

• 2 processor, 9 2TB drives, 128 GB of RAM


• Used for both computation and in-memory indexing

• Lot skimpier data budget however:

• 10B/person in RAM (no redundancy)

• 400B/person on disk (HDFS redundancy)

• ~$15k/node budget
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Phase 1: 
Two Racks, ~$1M
• 80u space -> 10 storage pods and 40 nodes

• Computational budget:

• 400B/person RAM

• 16kB/person computation disk

• 100kB/person storage disk


• OK, so this is starting to get a little interesting…
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What to do with 100kB 
a person?
• Can have a really nice mostly static profile

• Photos for image recognition

• Current and previous address history

• List of known accounts and identifiers

• List of known associates and relationships

• Airline travel history

• Border crossing history


• Updating a minor pain

• “Append-info” buckets and then occasionally prune/reduce
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Phase 2: One Container (20 racks)

$10M
• Basic strategy is “replicate”, so now its 

time to switch to even bigger blocks

• Standard solution these days: just add power & AC


• Gives us a lot more storage per person

• 4 kB RAM/person

• 160 kB/person compute storage

• 1 MB/person data storage


• At this point, we can now start talking continuous 
tracking…
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So at 1 MB per person…

• A day’s location history is perhaps 10 kB

• So that’s 100 days, but…

• Why not store “typical days and deviations”

• Or decay the older data…


• A good insight into web browsing history or email metadata

• DNS lookups, pageviews, etc
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Phase 3: 10 Containers (200 racks) 
$100M
• Now we are talking!

• 40 kB RAM/person

• Major in-memory indexes!

• 1.6 MB computation disk/person

• 10 MB storage/person


• If you haven’t guessed by now, the scaling is pretty darn 
linear…


• And the utility may grow superlinear, or at least with interesting steps…   
10 MB/person worldwide is an impressive dossier
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