
Computer Science 61C Spring 2017 Friedland and Weaver

Lecture 38
April 24th, 2017

Dependability and ECC

1

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #6:  
Dependability via Redundancy
• Applies to everything from data centers to memory

• Redundant data centers so that can lose 1 datacenter but Internet service stays

online

• Redundant routes so can lose nodes but Internet doesn’t fail

• Or at least can recover quickly…

• Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of
Independent Disks/RAID)

• Redundant memory bits of so that can lose 1 bit but no data (Error Correcting
Code/ECC Memory)

2

Computer Science 61C Fall 2016 Friedland and Weaver

Dependability Corollary: 
Fault Detection

• The ability to determine that something is wrong is often the
key to redundancy

• "Work correctly or fail" is far easier to deal with than "May work

incorrectly on failure"

• Error detection is generally a necessary prerequisite to error

correction

• And as we saw with Rowhammer: Errors aren't just errors, but can

be potential avenues for exploitation!

3

Computer Science 61C Fall 2016 Friedland and Weaver

Dependability via Redundancy:  
Time vs. Space

• Spa%al	
 Redundancy	
 –	
 replicated	
 data	
 or	
 check	
 informa2on	
 or	

hardware	
 to	
 handle	
 hard	
 and	
 so5	
 (transient)	
 failures	

• Temporal	
 Redundancy	
 –	
 redundancy	
 in	
 2me	
 (retry)	
 to	
 handle	
 so5	

(transient)	
 failures	

• "Insanity overcoming soft failures is repeatedly doing the same thing

and expecting different results"

4

Computer Science 61C Fall 2016 Friedland and Weaver

Dependability Measures

• Reliability: Mean Time To Failure (MTTF)

• Service interruption: Mean Time To Repair (MTTR)

• Mean time between failures (MTBF)

• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)

• Improving Availability

• Increase MTTF: More reliable hardware/software + Fault Tolerance

• Reduce MTTR: improved tools and processes for diagnosis and repair

5

Computer Science 61C Fall 2016 Friedland and Weaver

Availability Measures

• Availability = MTTF / (MTTF + MTTR) as %

• MTTF, MTBF usually measured in hours

• Since hope rarely down, shorthand is  
“number of 9s of availability per year”

• 1 nine: 90% => 36 days of repair/year

• 2 nines: 99% => 3.6 days of repair/year

• 3 nines: 99.9% => 526 minutes of repair/year

• 4 nines: 99.99% => 53 minutes of repair/year

• 5 nines: 99.999% => 5 minutes of repair/year

6

Computer Science 61C Fall 2016 Friedland and Weaver

Reliability Measures

• Another is average number of failures per year: Annualized Failure
Rate (AFR)

• E.g., 1000 disks with 100,000 hour MTTF

• 365 days * 24 hours = 8760 hours

• (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average

• 87.6/1000 = 8.76% annual failure rate

• Google’s 2007 study* found that actual AFRs for individual drives
ranged from 1.7% for first year drives to over 8.6% for three-year
old drives

7

*research.google.com/archive/disk_failures.pdf

Computer Science 61C Fall 2016 Friedland and Weaver

The "Bathtub Curve"

• Often failures follow the "bathtub curve"

• Brand new devices may fail

• "Crib death"

• Old devices fail

• Random failure 

in between

8
https://upload.wikimedia.org/wikipedia/commons/7/78/Bathtub_curve.svg

Computer Science 61C Fall 2016 Friedland and Weaver

Dependability Design Principle

• Design Principle: No single points of failure

• “Chain is only as strong as its weakest link” 

• Dependability behaves like speedup of Amdahl’s Law

• Doesn’t matter how dependable you make one portion of system

• Dependability limited by part you do not improve

9

Computer Science 61C Fall 2016 Friedland and Weaver

Error Detection/Correction Codes

• Memory systems generate errors (accidentally flipped-bits)

• DRAMs store very little charge per bit

• “Soft” errors occur occasionally when cells are struck by alpha particles or

other environmental upsets

• “Hard” errors can occur when chips permanently fail

• Problem gets worse as memories get denser and larger

• Memories protected against failures with EDC/ECC

• Extra bits are added to each data-word

• Used to detect and/or correct faults in the memory system

• Each data word value mapped to unique code	
 word

• A fault changes valid code word to invalid one, which can be detected

10

Computer Science 61C Fall 2016 Friedland and Weaver

Block Code Principles

• Hamming distance = difference in # of bits

• p = 011011, q = 001111, Ham. distance (p,q) = 2

• p = 011011,  

q = 110001,  
distance (p,q) = ?

• Can think of extra bits as creating 
a code with the data

• What if minimum distance  
between members of code is 2 
and get a 1-bit error?

Richard	
 Hamming,	
 1915-­‐98	

Turing	
 Award	
 Winner	

11

Computer Science 61C Fall 2016 Friedland and Weaver

Parity: Simple Error-Detection Coding

• Each data value, before it is written to memory is “tagged” with an extra bit to
force the stored word to have even	
 parity:

• Each	
 word,	
 as	
 it	
 is	
 read	
 from	

memory	
 is	
 “checked”	
 by	

finding	
 its	
 parity	
 (including	

the	
 parity	
 bit).	
 	

b7b6b5b4b3b2b1b0

+ b7b6b5b4b3b2b1b0	
 	
 	
 p

+
c

• Minimum	
 Hamming	
 distance	
 of	
 parity	
 code	
 is	
 2	

• A	
 non-­‐zero	
 parity	
 check	
 indicates	
 an	
 error	
 occurred:	

– 2	
 errors	
 (on	
 different	
 bits)	
 are	
 not	
 detected	
 	

– nor	
 any	
 even	
 number	
 of	
 errors,	
 just	
 odd	
 numbers	
 of	
 errors	
 are	
 detected

12

p

Computer Science 61C Fall 2016 Friedland and Weaver

Parity Example

• Data 0101 0101

• 4 ones, even parity now

• Write to memory: 

0101 0101 0  
to keep parity even

• Data 0101 0111

• 5 ones, odd parity now

• Write to memory: 

0101 0111 1 
to make parity even

• Read	
 from	
 memory 
0101	
 0101	
 0	

• 4	
 ones	
 =>	
 even	
 parity,	
 so	

no	
 error	

• Read	
 from	
 memory 
1101	
 0101	
 0	

• 5	
 ones	
 =>	
 odd	
 parity,	
  
so	
 error	

• What	
 if	
 error	
 in	
 parity	

bit?

13

Computer Science 61C Fall 2016 Friedland and Weaver

Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to understand mapping to
allow Error Correction at minimum distance of 3

• Single error correction, double error detection  

• Called “Hamming ECC”

• Worked weekends on relay computer with unreliable card reader, frustrated

with manual restarting

• Got interested in error correction; published 1950

• R. W. Hamming, “Error Detecting and Correcting Codes,” The	
 Bell	
 System	

Technical	
 Journal, Vol. XXVI, No 2 (April 1950) pp 147-160.

14

Computer Science 61C Fall 2016 Friedland and Weaver

Detecting/Correcting Code Concept

• Detection: bit pattern
fails codeword check

• Correction: map to
nearest valid code word

Space	
 of	
 possible	
 bit	
 patterns	
 (2N)

Sparse	
 population	
 of	
 code	
 words	
 (2M	
 <<	
 2N)	
 	

	
 	
 	
 	
 -­‐	
 	
 	
 with	
 identifiable	
 signature

Error	
 changes	
 bit	
 pattern	
 to	
 	

non-­‐code	

15

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming Distance: 8 code words

16

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming Distance 2: Detection 
Detect	
 Single	
 Bit	
 Errors

17

• No	
 1	
 bit	
 error	
 goes	
 to	
 another	
 valid	
 codeword	

• ½	
 codewords	
 are	
 valid	

• This	
 is	
 parity

Invalid	

Codewords

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming Distance 3: Correction 
Correct Single Bit Errors, Detect Double Bit Errors

18

•	
 No	
 2	
 bit	
 error	
 goes	
 to	
 another	
 valid	
 codeword;	
 1	
 bit	
 error	
 near	

•	
 1/4	
 codewords	
 are	
 valid

Nearest	
  
000	

(one	
 1)

Nearest	
  
111	

(one	
 0)

Computer Science 61C Fall 2016 Friedland and Weaver

Graphic of Hamming Code

• http://en.wikipedia.org/wiki/Hamming_code

19

http://en.wikipedia.org/wiki/Hamming_code
http://en.wikipedia.org/wiki/Hamming_code

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC

Set parity bits to create even parity for each group

• A byte of data: 10011010

• Create the coded word, leaving spaces for the parity bits:

• _ _ 1 _ 0 0 1 _ 1 0 1 0

 1 2 3 4 5 6 7 8 9 a b c – bit position

• Calculate the parity bits

20

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC

• Position 1 checks bits 1,3,5,7,9,11:  
? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a _:  

• Position 2 checks bits 2,3,6,7,10,11: 
0 ?	
 1	
 _ 0 0	
 1 _ 1 0	
 1 0. set position 2 to a _:  

• Position 4 checks bits 4,5,6,7,12: 
0 1 1 ?	
 0	
 0	
 1 _ 1 0 1 0. set position 4 to a _:  

• Position 8 checks bits 8,9,10,11,12: 
0 1 1 1 0 0 1 ?	
 1	
 0	
 1	
 0. set position 8 to a _:  

21

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC

• Position 1 checks bits 1,3,5,7,9,11:  
? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a 0:  
0 _ 1 _ 0 0 1 _ 1 0 1 0

• Position 2 checks bits 2,3,6,7,10,11: 
0 ?	
 1	
 _ 0 0	
 1 _ 1 0	
 1 0. set position 2 to a 1:  
0 1	
 1 _ 0 0	
 1 _ 1 0	
 1 0

• Position 4 checks bits 4,5,6,7,12: 
0 1 1 ?	
 0	
 0	
 1 _ 1 0 1 0. set position 4 to a 1:  
0 1 1 1	
 0	
 0	
 1	
 _ 1 0 1 0

• Position 8 checks bits 8,9,10,11,12: 
0 1 1 1 0 0 1 ?	
 1	
 0	
 1	
 0. set position 8 to a 0:  
0 1 1 1 0 0 1 0	
 1	
 0	
 1	
 0

22

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC

• Final code word: 011100101010

• Data word: 	 1 001 1010

23

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC Error Check

• Suppose receive  
011100101110  
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0 1 1 1 0 0 1 0 1 1 1 0

24

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC Error Check

• Suppose receive  
011100101110

25

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC Error Check

• Suppose receive  
011100101110  
0 1 0 1 1 1 √ 
 11 01 11 X-Parity 2 in error 
 1001 0 √ 
 01110 X-Parity 8 in error

• Implies	
 posi%on	
 8+2=10	
 is	
 in	
 error 
011100101110

26

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC Error Correct

• Flip the incorrect bit … 
011100101010  

27

Computer Science 61C Fall 2016 Friedland and Weaver

Hamming ECC Error Correct

• Suppose receive  
011100101010  
0 1 0 1 1 1 √ 
 11 01 01 √ 
 1001 0 √ 
 01010 √

28

Computer Science 61C Fall 2016 Friedland and Weaver

One Problem: Malicious "errors"

• Error Correcting Code and Error Detecting codes designed for
random errors

• But sometimes you need to protect against deliberate	
 errors

• Enter cryptographic hash functions

• Designed to be nonreversible and unpredictable

• An attacker should not be able to change, add, or remove any bits without

changing the hash output

• For a 256b cryptographic hash function (e.g. SHA256), need to have 2128 items you are

comparing before you have a reasonable possibility of a collision

• This is also known as a "Message Digest"

29

Computer Science 61C Fall 2016 Friedland and Weaver

And, in Conclusion, …

• Great Idea: Redundancy to Get Dependability

• Spatial (extra hardware) and Temporal (retry if error)

• Reliability: MTTF & Annualized Failure Rate (AFR)

• Availability: % uptime (MTTF-MTTR/MTTF)

• Memory

• Hamming distance 2: Parity for Single Error Detect

• Hamming distance 3: Single Error Correction Code + encode bit position of error

• Treat disks like memory, except you know when a disk has failed—
erasure makes parity an Error Correcting Code

• RAID-2, -3, -4, -5: Interleaved data and parity

30

