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1



Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #6:  
Dependability via Redundancy
• Applies to everything from data centers to memory

• Redundant data centers so that can lose 1 datacenter but Internet service stays 

online

• Redundant routes so can lose nodes but Internet doesn’t fail

• Or at least can recover quickly…


• Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of 
Independent Disks/RAID)


• Redundant memory bits of so that can lose 1 bit but no data (Error Correcting 
Code/ECC Memory)
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Dependability Corollary: 
Fault Detection

• The ability to determine that something is wrong is often the 
key to redundancy

• "Work correctly or fail" is far easier to deal with than "May work 

incorrectly on failure"

• Error detection is generally a necessary prerequisite to error 

correction

• And as we saw with Rowhammer: Errors aren't just errors, but can 

be potential avenues for exploitation!
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Dependability via Redundancy:  
Time vs. Space

• Spa%al	
  Redundancy	
  –	
  replicated	
  data	
  or	
  check	
  informa2on	
  or	
  
hardware	
  to	
  handle	
  hard	
  and	
  so5	
  (transient)	
  failures	
  

• Temporal	
  Redundancy	
  –	
  redundancy	
  in	
  2me	
  (retry)	
  to	
  handle	
  so5	
  
(transient)	
  failures	
  
• "Insanity overcoming soft failures is repeatedly doing the same thing 

and expecting different results"
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Dependability Measures

• Reliability: Mean Time To Failure (MTTF)

• Service interruption: Mean Time To Repair (MTTR)

• Mean time between failures (MTBF)

• MTBF = MTTF + MTTR


• Availability = MTTF / (MTTF + MTTR)

• Improving Availability

• Increase MTTF: More reliable hardware/software + Fault Tolerance

• Reduce MTTR: improved tools and processes for diagnosis and repair
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Availability Measures

• Availability = MTTF / (MTTF + MTTR) as %

• MTTF, MTBF usually measured in hours


• Since hope rarely down, shorthand is  
“number of 9s of availability per year”


• 1 nine: 90% => 36 days of repair/year

• 2 nines: 99% => 3.6 days of repair/year

• 3 nines: 99.9% => 526 minutes of repair/year

• 4 nines: 99.99% => 53 minutes of repair/year

• 5 nines: 99.999% => 5 minutes of repair/year
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Reliability Measures

• Another is average number of failures per year: Annualized Failure 
Rate (AFR)

• E.g., 1000 disks with 100,000 hour MTTF 

• 365 days * 24 hours = 8760 hours

• (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average

• 87.6/1000 = 8.76% annual failure rate


• Google’s 2007 study* found that actual AFRs for individual drives 
ranged from 1.7% for first year drives to over 8.6% for three-year 
old drives
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The "Bathtub Curve"

• Often failures follow the "bathtub curve"

• Brand new devices may fail

• "Crib death"

• Old devices fail

• Random failure 

in between
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Dependability Design Principle

• Design Principle: No single points of failure

• “Chain is only as strong as its weakest link” 

• Dependability behaves like speedup of Amdahl’s Law

• Doesn’t matter how dependable you make one portion of system

• Dependability limited by part you do not improve
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Error Detection/Correction Codes

• Memory systems generate errors (accidentally flipped-bits)

• DRAMs store very little charge per bit

• “Soft” errors occur occasionally when cells are struck by alpha particles or 

other environmental upsets

• “Hard” errors can occur when chips permanently fail

• Problem gets worse as memories get denser and larger


• Memories protected against failures with EDC/ECC

• Extra bits are added to each data-word

• Used to detect and/or correct faults in the memory system

• Each data word value mapped to unique code	
  word 

• A fault changes valid code word to invalid one, which can be detected
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Block Code Principles

• Hamming distance = difference in # of bits

• p = 011011, q = 001111, Ham. distance (p,q) = 2

• p = 011011,  

q = 110001,  
distance (p,q) = ?


• Can think of extra bits as creating 
a code with the data


• What if minimum distance  
between members of code is 2 
and get a 1-bit error?

Richard	
  Hamming,	
  1915-­‐98	
  
Turing	
  Award	
  Winner	
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Parity: Simple Error-Detection Coding

• Each data value, before it is written to memory is “tagged” with an extra bit to 
force the stored word to have even	
  parity:

• Each	
  word,	
  as	
  it	
  is	
  read	
  from	
  
memory	
  is	
  “checked”	
  by	
  
finding	
  its	
  parity	
  (including	
  
the	
  parity	
  bit).	
  	
  

b7b6b5b4b3b2b1b0

+ b7b6b5b4b3b2b1b0	
  	
  	
  p

+
c

• Minimum	
  Hamming	
  distance	
  of	
  parity	
  code	
  is	
  2	
  
• A	
  non-­‐zero	
  parity	
  check	
  indicates	
  an	
  error	
  occurred:	
  
– 2	
  errors	
  (on	
  different	
  bits)	
  are	
  not	
  detected	
  	
  
– nor	
  any	
  even	
  number	
  of	
  errors,	
  just	
  odd	
  numbers	
  of	
  errors	
  are	
  detected
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Parity Example

• Data 0101 0101

• 4 ones, even parity now

• Write to memory: 

0101 0101 0  
to keep parity even


• Data 0101 0111

• 5 ones, odd parity now

• Write to memory: 

0101 0111 1 
to make parity even

• Read	
  from	
  memory 
0101	
  0101	
  0	
  

• 4	
  ones	
  =>	
  even	
  parity,	
  so	
  
no	
  error	
  

• Read	
  from	
  memory 
1101	
  0101	
  0	
  

• 5	
  ones	
  =>	
  odd	
  parity,	
    
so	
  error	
  

• What	
  if	
  error	
  in	
  parity	
  
bit?
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Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to understand mapping to 
allow Error Correction at minimum distance of 3

• Single error correction, double error detection  

• Called “Hamming ECC” 

• Worked weekends on relay computer with unreliable card reader, frustrated 

with manual restarting

• Got interested in error correction; published 1950

• R. W. Hamming, “Error Detecting and Correcting Codes,” The	
  Bell	
  System	
  
Technical	
  Journal, Vol. XXVI, No 2 (April 1950) pp 147-160.
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Detecting/Correcting Code Concept

• Detection: bit pattern 
fails codeword check


• Correction: map to 
nearest valid code word

Space	
  of	
  possible	
  bit	
  patterns	
  (2N)

Sparse	
  population	
  of	
  code	
  words	
  (2M	
  <<	
  2N)	
  	
  
	
  	
  	
  	
  -­‐	
  	
  	
  with	
  identifiable	
  signature

Error	
  changes	
  bit	
  pattern	
  to	
  	
  
non-­‐code	
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Hamming Distance: 8 code words
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Hamming Distance 2: Detection 
Detect	
  Single	
  Bit	
  Errors
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• No	
  1	
  bit	
  error	
  goes	
  to	
  another	
  valid	
  codeword	
  
• ½	
  codewords	
  are	
  valid	
  

• This	
  is	
  parity

Invalid	
  
Codewords
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Hamming Distance 3: Correction 
Correct Single Bit Errors, Detect Double Bit Errors
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•	
  No	
  2	
  bit	
  error	
  goes	
  to	
  another	
  valid	
  codeword;	
  1	
  bit	
  error	
  near	
  
•	
  1/4	
  codewords	
  are	
  valid

Nearest	
    
000	
  

(one	
  1)

Nearest	
    
111	
  
(one	
  0)
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Graphic of Hamming Code

• http://en.wikipedia.org/wiki/Hamming_code 
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Hamming ECC

Set parity bits to create even parity for each group

• A byte of data: 10011010

• Create the coded word, leaving spaces for the parity bits: 

• _ _ 1 _ 0 0 1 _ 1 0 1 0

    1 2 3 4 5 6 7 8 9 a b c – bit position 


• Calculate the parity bits
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Hamming ECC

• Position 1 checks bits 1,3,5,7,9,11:  
? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a _:  

• Position 2 checks bits 2,3,6,7,10,11: 
0 ?	
  1	
  _ 0 0	
  1 _ 1 0	
  1 0. set position 2 to a _:  
 


• Position 4 checks bits 4,5,6,7,12: 
0 1 1 ?	
  0	
  0	
  1 _ 1 0 1 0. set position 4 to a _:  

• Position 8 checks bits 8,9,10,11,12: 
0 1 1 1 0 0 1 ?	
  1	
  0	
  1	
  0. set position 8 to a _:  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Hamming ECC

• Position 1 checks bits 1,3,5,7,9,11:  
? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a 0:  
0 _ 1 _ 0 0 1 _ 1 0 1 0 


• Position 2 checks bits 2,3,6,7,10,11: 
0 ?	
  1	
  _ 0 0	
  1 _ 1 0	
  1 0. set position 2 to a 1:  
0 1	
  1 _ 0 0	
  1 _ 1 0	
  1 0 


• Position 4 checks bits 4,5,6,7,12: 
0 1 1 ?	
  0	
  0	
  1 _ 1 0 1 0. set position 4 to a 1:  
0 1 1 1	
  0	
  0	
  1	
  _ 1 0 1 0 


• Position 8 checks bits 8,9,10,11,12: 
0 1 1 1 0 0 1 ?	
  1	
  0	
  1	
  0. set position 8 to a 0:  
0 1 1 1 0 0 1 0	
  1	
  0	
  1	
  0 
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Hamming ECC

• Final code word: 011100101010

• Data word: 	               1   001  1010
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Hamming ECC Error Check

• Suppose receive  
011100101110  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0 1 1 1 0 0 1 0 1 1 1 0
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Hamming ECC Error Check

• Suppose receive  
011100101110
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Hamming ECC Error Check

• Suppose receive  
011100101110  
0 1 0 1 1 1  √ 
 11  01  11  X-Parity 2 in error 
   1001    0 √ 
       01110 X-Parity 8 in error


• Implies	
  posi%on	
  8+2=10	
  is	
  in	
  error 
011100101110
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Hamming ECC Error Correct

• Flip the incorrect bit … 
011100101010  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Hamming ECC Error Correct

• Suppose receive  
011100101010  
0 1 0 1 1 1  √ 
 11  01  01  √ 
   1001    0 √ 
       01010 √
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One Problem: Malicious "errors"

• Error Correcting Code and Error Detecting codes designed for 
random errors


• But sometimes you need to protect against deliberate	
  errors

• Enter cryptographic hash functions

• Designed to be nonreversible and unpredictable

• An attacker should not be able to change, add, or remove any bits without 

changing the hash output

• For a 256b cryptographic hash function (e.g. SHA256), need to have 2128 items you are 

comparing before you have a reasonable possibility of a collision

• This is also known as a "Message Digest"
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And, in Conclusion, …

• Great Idea: Redundancy to Get Dependability

• Spatial (extra hardware) and Temporal (retry if error)


• Reliability: MTTF & Annualized Failure Rate (AFR)

• Availability: % uptime (MTTF-MTTR/MTTF)

• Memory

• Hamming distance 2: Parity for Single Error Detect

• Hamming distance 3: Single Error Correction Code + encode bit position of error


• Treat disks like memory, except you know when a disk has failed—
erasure makes parity an Error Correcting Code


• RAID-2, -3, -4, -5: Interleaved data and parity
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