
Computer Science 61C Spring 2017 Friedland and Weaver

Lecture 1
January 18th, 2017

Great Ideas in Computer
Architecture  

(a.k.a. Machine Structures)

1

Computer Science 61C Fall 2016 Friedland and Weaver

Dr. Gerald Friedland 
Adjunct Assistant Professor

2

• My primary specialty is Multimedia
Computing

• I also work on Privacy and Privacy
Education

• The combination led me to build hardware!

• Previously taught (undergraduate):

• CS10 (The Beauty and Joy of Computing)

• CS88 (Computational Structures for Data

Science)

Computer Science 61C Fall 2016 Friedland and Weaver

Dr. Nick Weaver 
Lecturer
• My primary specialty is Network

Security and Network Measurement

• Although a reformed hardware person, originally

specializing in FPGAs

• I will sprinkle a fair bit of security stuff
throughout the lectures

• Security is not an afterthought, but needs to be
engineered in from the start: Since this class
covers everything from the transistor to the cloud,
I'll make security notes along the way

3

Not the evil Polyjuice  
Doppleganger Version...

Computer Science 61C Fall 2016 Friedland and Weaver

Course Information

• Course Web: http://www-inst.eecs.bekeley.edu/cs61c/

• Instructors:

• Gerald Friedland & Nicholas Weaver

• Teaching Assistants: (see webpage)

• Textbooks: Average 15 pages of reading/week (can rent!)

• Patterson & Hennessey, Computer	Organiza0on	and	Design, 5/e 

(we’ll try to provide 4th Ed pages, not Asian version 4th edition)

• Kernighan & Ritchie, The	C	Programming	Language, 2nd Edition

• Barroso & Holzle, The	Datacenter	as	a	Computer,	2nd	Edi0on

4

Computer Science 61C Fall 2016 Friedland and Weaver

Course Grading

• EPA: Effort, Participation and Altruism (5%)

• Homework (5%)

• Labs (5%)

• Projects (25%) (Projects done and submitted individually)

1. Build a regular expressions matcher (C)

2. Assembler and Linker (MIPS & C)

3. Computer Processor Design (Logisim)

4. Parallelize for Performance, SIMD, MIMD

5. Massive Data Parallelism (Spark on Amazon EC2)

• Two midterms (15% each): 6th & 12th week evening the day of the class, can be
clobbered!

• Final (30%)

• Performance Competition for honor (and EPA)

5

Computer Science 61C Fall 2016 Friedland and Weaver

Piazza & Slack

• Piazza is an official channel

• We will post announcements in it and we expect that, by posting

announcements, you will read them

• You can use this as a discussion forum to ask open questions

• If you have private questions of the instructors and staff: 

do not use email, use a private question in Piazza

• The Slack channel is an unofficial channel

• But some may drop in anyway.

6

Computer Science 61C Fall 2016 Friedland and Weaver

Tried-and-True Technique: Peer Instruction

• Increase real-time learning in lecture,  
test understanding of concepts vs. details

• As complete a “segment” ask multiple-choice question

• 1-2 minutes to decide yourself

• 2 minutes in pairs/triples to reach consensus.

• Teach others!

• 2 minute discussion of answers, questions, clarifications

• You can get transmitters from the ASUC bookstore

• We don't know if the WiFi is good enough for REEF soft-clickers

7

Computer Science 61C Fall 2016 Friedland and Weaver

EECS Grading Policy

• http://www.eecs.berkeley.edu/Policies/ugrad.grading.shtml

	 “A typical GPA for courses in the lower division is 2.7. This GPA would result, for

example, from 17% A's, 50% B's, 20% C's, 10% D's, and 3% F's. A class whose
GPA falls outside the range 2.5 - 2.9 should be considered atypical.”

• Fall 2010: GPA 2.81  
26% A's, 47% B's, 17% C's,  
3% D's, 6% F's

• Job/Intern Interviews: They grill 
you with technical questions, so 
it’s what you say, not your GPA

	 (New 61C gives good stuff to say)

8

Fall Spring

2015 2.82
2010 2.81 2.81
2009 2.71 2.81
2008 2.95 2.74
2007 2.67 2.76

Computer Science 61C Fall 2016 Friedland and Weaver

Our goal as instructors

• To make your experience in CS61C as enjoyable &
informative as possible

• Humor, enthusiasm & technology-in-the-news in lecture

• Fun, challenging projects & HW

• Pro-student policies (exam clobbering)

• To maintain Cal & EECS standards of excellence

• Projects & exams will be as rigorous as every year.

• Score 7.0 on HKN:

• Please give feedback! Why are we not 7.0 for you? We will listen!

9

Computer Science 61C Fall 2016 Friedland and Weaver

EPA!

• Effort

• Attending prof and TA office hours, completing all assignments,  

turning in HW, doing reading quizzes

• Participation

• Attending lecture and voting using the clickers

• If you have a lecture conflict, please note it for us on Piazza 

If you just miss one or two lectures, don't worry about it....

• Asking great questions in discussion and lecture and making it more interactive

• Altruism

• Helping others in lab or on Piazza: Be Excellent to Each Other

• EPA! points have the potential to bump students up to the next grade
level! (but actual EPA! scores are internal)

10

Computer Science 61C Fall 2016 Friedland and Weaver

Late Policy…

Slip Days!
• Assignments due at 11:59:59 PM PT

• You have 3 slip day tokens (NOT hour or min)

• Every day your project is late (even by a millisecond) we

deduct a token

• After you’ve used up all tokens, it’s 33% deducted per day.

• No credit if more than 3 days late

• Cannot be used on homeworks!

• No need for sob stories, just use a slip day!

11

Computer Science 61C Fall 2016 Friedland and Weaver

Policy on Assignments  
and Independent Work
• ALL PROJECTS WILL BE DONE AND SUBMITTED INDIVIDUALLY

• With the exception of laboratories and assignments that explicitly permit you to work in

groups, all homework and projects are to be YOUR work and your work ALONE.

• You are encouraged to discuss your assignments with other students, and extra credit will

be assigned to students who help others, particularly by answering questions on Piazza,
but we expect that what you hand in is yours.

• It is NOT acceptable to copy (or even "start with") solutions from other students or the Web

• It is NOT acceptable to use PUBLIC GitHub archives (giving your answers away)

• We have tools and methods, developed over many years, for detecting this. You WILL be

caught, and the penalties WILL be severe.

• Both Giver and Receiver are equally culpable and suffer equal penalties

• If it is from a previous semester, the previous semester's students will also be reported to the student conduct office

12

Computer Science 61C Fall 2016 Friedland and Weaver

Use Git and Push Often…

• You will be using BitBucket to host your projects for submission…

• So use it for your normal workflow too

• Push your work back to BitBucket on a regular basis

• It really prevents screwups:  

“Ooops, go back” is the reason for version control

• It gives a timestamp of when you wrote your code

• Very useful if flagged for cheating

• Also, for any C coding, use valgrind

• C is not memory safe,  

valgrind will catch most of these errors when you make them

13

Computer Science 61C Fall 2016 Friedland and Weaver

Intellectual Honesty Policy: 
Detection and Retribution

• We view those who would cheat as “attackers”

• This includes sharing code on homework or projects, midterms, finals, etc…

• But we (mostly) assume rational attackers: Benefit of attack > Expected cost

• Cost of launching attack + cost of getting caught * probability of getting caught

• We take a detection and response approach

• We use many tools to detect violations

• "Obscurity is not security", but obscurity can help. Just let it be known that  

"We Have Ways"

• We will go to DEFCON 1 (aka "launch the nukes") immediately

• “Nick doesn’t make threats. He keeps promises”

• Punishment can be up to an F in the class but, at minimum, 

negative points:

• You will do better if you don't do your work at all than if you cheat

• All incidents will be reported to the office of student conduct

14

Computer Science 61C Fall 2016 Friedland and Weaver

Stress Management & 
Mental Health...
• We'll try to not over-stress you too much

• But there really is a lot to cover and this really is a demanding major

• There are 5 projects!

• If you feel overwhelmed, please use the resources available

• Academically: Ask on Piazza, Tutoring, Office hours, the Slack channel,

Guerrilla sections, etc...

• Non-Academic: Take advantage of University Health Services if you need to

• Nick did! Zoloft (an antidepressant) and therapy saved his life, twice.

15

Computer Science 61C Fall 2016 Friedland and Weaver

Oh, and get a Raspberry Pi 3...

• You don't have to (we have a cluster for remote login), 
but you really want to get one...

• Will work for all projects

• Project 4 and 5 will specifically target the Raspberry Pi 3

• Its also a beast:

• GHz processor, quad core, 64b ARM processor

• 1 GB of RAM, 100 Mbps Ethernet, WiFi, Bluetooth,  

HDMI-out, 4x USB 2.0

• SD card (I prefer 128GB but 8GB will do)

• Complete systems for <$70

• Compare with Nick's computer when he took CS60b...

• NeXTStation: 25 MHz 68040 processor, 20 MB of RAM, 200 MB hard drive 

and it cost nearly 100x as much!

16

Computer Science 61C Fall 2016 Friedland and Weaver

Architecture of a typical Lecture

17

Attention

Time	(minutes)
0 30 50

Clickers  
Administrivia

“And	in	 
conclusion…”

Full

Computer Science 61C Fall 2016 Friedland and Weaver

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

18

Computer Science 61C Fall 2016 Friedland and Weaver

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

19

Computer Science 61C Fall 2016 Friedland and Weaver

CS61C is not

about C Programming
• It is about the hardware-software interface

• What does the programmer need to know to achieve the highest

possible performance

• C is close to the underlying hardware, unlike languages
like Scheme, Python, Java, Go, Perl, R, Prolog...

• C is portable PDP8 Assembly Language.  

C++ is portable PDP8 Assembly Language with delusions of grandeur

• Allows us to talk about key hardware features in higher level terms

• Allows programmer to explicitly harness underlying hardware parallelism

for high performance

• Also allows programmer to shoot oneself in the foot in
amazingly spectacular ways

• One of the goals in this class is for you to develop a rational hatred of C

20

Computer Science 61C Fall 2016 Friedland and Weaver

Modern 61C:

From the small...

21

Personal	
Mobile	
Devices

Computer Science 61C Fall 2016 Friedland and Weaver

To the Big...

22

Computer Science 61C Fall 2016 Friedland and Weaver

Old School Machine Structures

23

CS61C

I/O	systemProcessor

Compiler
Operating
System	
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set	
	Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler

Computer Science 61C Fall 2016 Friedland and Weaver

New School 61C: 
From the Data Center to the Gate
• Parallel Requests

Assigned to computer

e.g., Search “cats”

• Parallel Threads

Assigned to core

e.g., Lookup, Ads

• Parallel Instructions

>1 instruction @ one time

e.g., 5 pipelined instructions

• Parallel Data

>1 data item @ one time

e.g., Add of 4 pairs of words

• Hardware descriptions

All gates functioning in parallel at same time

24

Smart 
Phone

Warehouse-
Scale	

Computer

Software								Hardware

Harness  
Parallelism	&	
Achieve	High  
Performance

Logic	Gates
				

Core Core…
					Memory															(Cache)

Input/Output

Comput

Main	Memory

Core

									Instruction	Unit(s)	 							Functional	

A3+B3A2+B2A1+B1A0+B0

Computer Science 61C Fall 2016 Friedland and Weaver

5 Great Ideas in Computer Architecture

1. Abstraction 
(Layers of Representation/Interpretation)

2. Moore’s Law (Designing through trends)

3. Principle of Locality (Memory Hierarchy)

4. Parallelism & Amdahl's law (which limits it)

5. Dependability via Redundancy

25

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #1: Abstraction 
(Levels of Representation/Interpretation)

lw	 $t0, 0($2)

lw	 $t1, 4($2)

sw	 $t1, 0($2)

sw	 $t0, 4($2)

High	Level	Language 
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description 
(e.g.,	block	diagrams)	

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];	
v[k]	=	v[k+1];	
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description 
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented  
as	a	number,	  

i.e.,	data	or	instructions

26

Computer Science 61C Fall 2016 Friedland and Weaver

#2: Moore’s Law

27

Gordon	Moore  
Intel	Cofounder 
B.S.	Cal	1950!

#	
of
	tr
an

si
st
or
s	o

n	
an

		i
nt
eg
ra
te
d	

Yea

Predicts:		
2X	Transistors	/	chip	 

every	2	years

Computer Science 61C Fall 2016 Friedland and Weaver

Interesting Times

• Moore’s Law relied on the cost of transistors scaling
down as technology scaled to smaller and smaller
feature sizes.

• And the resulting transistors resulted in increased single-task

performance

• But single-task performance improvements hit a brick
wall years ago...

• And now the newest, smallest fabrication processes
<14nm, might have greater cost/transistor!!!! So, why
shrink????

28

Moore’s Law
1965-2020?

Computer Science 61C Fall 2016 Friedland and Weaver

Jim Gray’s Storage Latency Analogy:  
How Far Away is the Data?

29

Register
s

On Chip
Cache

On Board
Cache

Main Memory

Disk

1
2

10

100

Tape Robot10 9

10 6

Sacramento

This Campus
This Room

My
Head

10
min

1.5
hr

2 Years

1
min

Pluto

2,000 Years
Andromeda

(ns)

Jim	Gray  
Turing	Award	
B.S.	Cal	1966	
Ph.D.	Cal	1969!

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #3: Principle of Locality/ 
Memory Hierarchy

30

If	your	computer	doesn’t	have 
an	SSD,	get	one!

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #4: Parallelism

31

Computer Science 61C Fall 2016 Friedland and Weaver

The Caveat: Amdahl's Law

32

Gene	Amdahl	
Computer	Pioneer

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #5: 
Failures Happen, so...
• 4 disks/server, 50,000 servers

• Failure rate of disks: 2% to 10% / year

• Assume 4% annual failure rate

• On average, how often does a disk fail?

a) 1 / month

b) 1 / week

c) 1 / day

d) 1 / hour

33

Computer Science 61C Fall 2016 Friedland and Weaver

Coping with Failures

• 4 disks/server, 50,000 servers

• Failure rate of disks: 2% to 10% / year

• Assume 4% annual failure rate

• On average, how often does a disk fail?

a) 1 / month

b) 1 / week

c) 1 / day

d) 1 / hour

34

50,000	x	4	=	200,000	disks	
200,000	x	4%	=	8000	disks	fail	

365	days	x	24	hours	=	8760	hours

Computer Science 61C Fall 2016 Friedland and Weaver

NASA Fixing Rover’s Flash Memory

• Opportunity still active on Mars
after >10 years

• But flash memory worn out

• New software update to avoid

using worn out memory banks

35

http://www.engadget.com/2014/12/30/nasa-opportunity-rover-flash-fix/

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #5:  
Dependability via Redundancy
• Redundancy so that a failing piece doesn’t make the whole

system fail

36

1+1=2 1+1=2 1+1=1

1+1=2
2	of	3	agree

FAIL!

Increasing	transistor	density	reduces	the	cost	of	redundancy

Computer Science 61C Fall 2016 Friedland and Weaver

Great Idea #5:  
Dependability via Redundancy
• Applies to everything from datacenters to storage to memory to instructors

• Redundant datacenters so that can lose 1 datacenter but Internet service stays online

• Redundant computers was Google’s original internal innovation

• Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent

Disks/RAID)

• Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC

Memory/"Chipkill" memory)

• Redundant instructors so one of us can travel while the other teaches ;-)

37

Computer Science 61C Fall 2016 Friedland and Weaver

Summary

• CS61C: Learn 6 great ideas in computer architecture to enable
high performance programming via parallelism, not just learn C

1. Abstraction 
(Layers of Representation/Interpretation)

2. Moore’s Law

3. Principle of Locality/Memory Hierarchy

4. Parallelism

5. Performance Measurement and Improvement

6. Dependability via Redundancy

38

